Significance of genetic modifiers of hemoglobinopathies leading towards precision medicine.

Sci Rep

Department of Haematogenetics, ICMR-National Institute of Immunohaematology, 13th Floor NMS Building, KEM Hospital Campus, Parel, Mumbai, 400012, India.

Published: October 2021

Hemoglobinopathies though a monogenic disorder, show phenotypic variability. Hence, understanding the genetics underlying the heritable sub-phenotypes of hemoglobinopathies, specific to each population, would be prognostically useful and could inform personalized therapeutics. This study aimed to evaluate the role of genetic modifiers leading to higher HbF production with cumulative impact of the modifiers on disease severity. 200 patients (100 β-thalassemia homozygotes, 100 Sickle Cell Anemia), and 50 healthy controls were recruited. Primary screening followed with molecular analysis for confirming the β-hemoglobinopathy was performed. Co-existing α-thalassemia and the polymorphisms located in 3 genetic loci linked to HbF regulation were screened. The most remarkable result was the association of SNPs with clinically relevant phenotypic groups. The γ-globin gene promoter polymorphisms [- 158 C → T, + 25 G → A],BCL11A rs1427407 G → T, - 3 bp HBS1L-MYB rs66650371 and rs9399137 T → C polymorphisms were correlated with higher HbF, in group that has lower disease severity score (P < 0.00001), milder clinical presentation, and a significant delay in the age of the first transfusion. Our study emphasizes the complex genetic interactions underlying the disease phenotype that may be a prognostic marker for predicting the clinical severity and assist in disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536722PMC
http://dx.doi.org/10.1038/s41598-021-00169-xDOI Listing

Publication Analysis

Top Keywords

genetic modifiers
8
higher hbf
8
disease severity
8
significance genetic
4
modifiers hemoglobinopathies
4
hemoglobinopathies leading
4
leading precision
4
precision medicine
4
medicine hemoglobinopathies
4
hemoglobinopathies monogenic
4

Similar Publications

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.

View Article and Find Full Text PDF

Cotton GhMAX2 promotes single-celled fiber elongation by releasing the GhS1FA-mediated inhibition of fatty acid biosynthesis.

Plant Cell Rep

January 2025

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!