Predicting subcellular location of protein with evolution information and sequence-based deep learning.

BMC Bioinformatics

Department of Computer Science and Engineering, University of South Carolina, 550 Assembly St, Columbia, SC, 29208, USA.

Published: October 2021

Background: Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information of proteins. In order to improve the prediction accuracy, we present a deep learning-based method to predict protein subcellular locations.

Results: Our method utilizes not only amino acid compositions sequence but also evolution matrices of proteins. Our method uses a bidirectional long short-term memory network that processes the entire protein sequence and a convolutional neural network that extracts features from protein sequences. The position specific scoring matrix is used as a supplement to protein sequences. Our method was trained and tested on two benchmark datasets. The experiment results show that our method yields accurate results on the two datasets with an average precision of 0.7901, ranking loss of 0.0758 and coverage of 1.2848.

Conclusion: The experiment results show that our method outperforms five methods currently available. According to those experiments, we can see that our method is an acceptable alternative to predict protein subcellular location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539821PMC
http://dx.doi.org/10.1186/s12859-021-04404-0DOI Listing

Publication Analysis

Top Keywords

protein subcellular
12
subcellular location
8
predict protein
8
protein sequences
8
experiment method
8
protein
7
method
7
predicting subcellular
4
location protein
4
protein evolution
4

Similar Publications

The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons.

J Biol Chem

January 2025

Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:

The Shab family voltage-gated K channels (i.e., Kv2.

View Article and Find Full Text PDF

Localized K63 ubiquitin signaling is regulated by VCP/p97 during oxidative stress.

Mol Cell Proteomics

January 2025

Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.

View Article and Find Full Text PDF

Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.

Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.

View Article and Find Full Text PDF

Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA metabolism is highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking.

View Article and Find Full Text PDF

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!