Citrus species are frequently subjected to water and saline stresses worldwide. We evaluated the effects of diurnal changes in the evaporative demands and soil water contents on the plant physiology of grapefruit and mandarin crops under saline reclaimed (RW) and transfer (TW) water conditions, combined with two irrigation strategies, fully irrigated (fI) and non-irrigated (nI). The physiological responses were different depending on the species. Grapefruit showed an isohydric pattern, which restricted the use of the leaf water potential (Ψ) as a plant water status indicator. Its water status was affected by salinity (RW) and water stress (nI), mainly as the combination of both stresses (RW-nI); however, mandarin turned out to be relatively more tolerant to salinity and more sensitive to water stress, mainly because of its low hydraulic conductance (K) levels, showing a critical drop in Ψ that led to severe losses of root-stem (K) and canopy (K) hydraulic conductance in TW-nI. This behavior was not observed in RW-nI because a reduction in canopy volume as an adaptive characteristic was observed; thus, mandarin exhibited more anisohydric behavior compared to grapefruit, but isohydrodynamic since its hydrodynamic water potential gradient from roots to shoots (ΔΨ) was relatively constant across variations in stomatal conductance (g) and soil water potential. The g was considered a good plant water status indicator for irrigation scheduling purposes in both species, and its responses to diurnal VPD rise and soil drought were strongly correlated with K. ABA did not show any effect on stomatal regulation, highlighting the fundamental role of plant hydraulics in driving stomatal closure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538605 | PMC |
http://dx.doi.org/10.3390/plants10102121 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!