Bacterial blight (BB) is caused by pv. and is one of the most important diseases in rice. It results in significantly reduced productivity throughout all rice-growing regions of the world. Four BB resistance genes have been reported; however, introgression of a single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding of effective BB resistance genes (i.e., genes) into background varieties is a potential approach to controlling BB infection. In this study, combinations of four BB resistance genes, , , , and , were pyramided into populations. The populations were derived from crossing Ciherang (a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from the F generation were identified by scoring the phenotype against three virulent bacterial strains, C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-assisted selection (MAS) of the F and F generations using gene-specific primers. Of these 265 RILs, 11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding of two or three resistance genes, with the resistance gene showing broad spectrum resistance against races with higher agronomic performance compared to their donor and recipients parents. The developed BB-resistant RILs have high yield potential to be further developed for cultivation or as sources of BB resistance donor material for varietal improvement in other rice lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540907PMC
http://dx.doi.org/10.3390/plants10102048DOI Listing

Publication Analysis

Top Keywords

resistance genes
24
resistance
11
bacterial blight
8
genes
8
genes resistance
8
three resistance
8
rice
6
introgression bacterial
4
blight resistance
4
genes rice
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.

Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.

View Article and Find Full Text PDF

Beneficial mutualistic fungus Suillus luteus provided excellent buffering insurance in Scots pine defense responses under pathogen challenge at transcriptome level.

BMC Plant Biol

January 2025

Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.

Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Soil is one of the most important reservoirs of antibiotic resistance, global threat that needs to be addressed with the One Health approach. Despite urban parks playing a fundamental role in urban ecosystems, the diffusion, maintenance, and human impact of antibiotic-resistance genes in this substrate are still poorly addressed. To fill in this gap, we adopted a molecular and culturomics approach to study antibiotic resistance in urban parks, accounting for the environmental matrix and the level of urbanization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!