Biochemical Basis for the Time-of-Day Effect on Glufosinate Efficacy against .

Plants (Basel)

Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA.

Published: September 2021

Glufosinate, a glutamine synthetase (GS) inhibitor, often provides variable weed control depending on environmental conditions such as light, temperature and humidity at the time of application. Midday applications normally provide improved efficacy compared to applications at dawn or dusk. We investigated the biochemical basis for the time-of-day effect on glufosinate efficacy in . / gene expression and GS1/GS2 protein abundance were assessed in different parts (young leaves, old leaves, and roots) of plants incubated in the dark compared to those in the light. The turnover of GS total activity was also evaluated overtime following glufosinate treatment at midday compared to dusk application. The results suggest that GS in is less expressed and less abundant in the dark compared to in the light. Midday application of glufosinate under intense light conditions following application provide full control of plants. Consequently, these plants are unable to recover GS activity by de novo protein synthesis. Full activity of GS is required for complete inhibition by the irreversible inhibitor glufosinate. Therefore, glufosinate applications should always be performed in the middle of the day when sunlight is intense, to prevent weed escapes from the herbicide treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537983PMC
http://dx.doi.org/10.3390/plants10102021DOI Listing

Publication Analysis

Top Keywords

biochemical basis
8
basis time-of-day
8
time-of-day glufosinate
8
glufosinate efficacy
8
dark compared
8
compared light
8
glufosinate
7
efficacy glufosinate
4
glufosinate glutamine
4
glutamine synthetase
4

Similar Publications

Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process.

Water Res

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.

View Article and Find Full Text PDF

The ASPARAGINE-RICH PROTEIN-LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.

The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

Wild or Reared? Jellyfish as a Potential Biofactory.

Mar Drugs

January 2025

Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, (CNR-ISPA)-Lecce, Via Monteroni, 73100 Lecce, Italy.

The zooxanthellate jellyfish (Forsskål, 1775), a Lessepsian species increasingly common in the western and central Mediterranean Sea, was investigated here to assess its potential as a source of bioactive compounds from medusa specimens both collected in the wild (the harbor of Palermo, NW Sicily) and reared under laboratory-controlled conditions. A standardized extraction protocol was used to analyze the biochemical composition of the two sampled populations in terms of protein, lipid, and pigment contents, as well as for their relative concentrations of dinoflagellate symbionts. The total extracts and their fractions were also biochemically characterized and analyzed for their in vitro antioxidant activity to quantify differences in functional compounds between wild and reared jellyfish.

View Article and Find Full Text PDF

Heat Tolerance Differences Between Hu Sheep and Hu Crossbred Sheep in Microbial Community Structure and Metabolism.

Metabolites

January 2025

Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China.

Background: The frequent occurrence of extreme temperature events causes significant economic losses to the livestock industry. Therefore, delving into the differences in the physiological and molecular mechanisms of heat stress across different sheep breeds is crucial for developing effective management and breeding strategies.

Methods: This study explores the differences in heat tolerance mechanisms between Hu sheep and Xinggao sheep by comparing their growth performance under normal and heat stress conditions, as well as examining the differences in physiological, biochemical, and antioxidant indicators related to heat tolerance, serum metabolomics, and gut microbiomics in a heat stress environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!