A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The N-Terminal Region of the Polo Kinase Cdc5 Is Required for Downregulation of the Meiotic Recombination Checkpoint. | LitMetric

During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for gene expression. Previous work revealed that overexpression of partially alleviates the checkpoint-imposed meiotic delay in the synaptonemal complex-defective mutant. Here, we show that overproduction of a Cdc5 version (Cdc5-ΔN70), lacking the N-terminal region required for targeted degradation of the protein by the APC/C complex, fails to relieve the -induced meiotic delay, despite being more stable and reaching increased protein levels. However, precise mutation of the consensus motifs for APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis. Compared to the single mutant, the double mutant exhibits an exacerbated meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally, using a -inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like kinase function in meiotic cell cycle control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533733PMC
http://dx.doi.org/10.3390/cells10102561DOI Listing

Publication Analysis

Top Keywords

n-terminal region
12
kinase cdc5
8
meiotic recombination
8
recombination checkpoint
8
polo-like kinase
8
cell cycle
8
meiotic delay
8
meiotic
6
cdc5
5
checkpoint
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!