Phototrophic biofilms, in particular terrestrial cyanobacteria, offer a variety of biotechnologically interesting products such as natural dyes, antibiotics or dietary supplements. However, phototrophic biofilms are difficult to cultivate in submerged bioreactors. A new generation of biofilm photobioreactors imitates the natural habitat resulting in higher productivity. In this work, an aerosol-based photobioreactor is presented that was characterized for the cultivation of phototrophic biofilms. Experiments and simulation of aerosol distribution showed a uniform aerosol supply to biofilms. Compared to previous prototypes, the growth of the terrestrial cyanobacterium sp. could be almost tripled. Different surfaces for biofilm growth were investigated regarding hydrophobicity, contact angle, light- and temperature distribution. Further, the results were successfully simulated. Finally, the growth of sp. was investigated on different surfaces and the biofilm thickness was measured noninvasively using optical coherence tomography. It could be shown that the cultivation surface had no influence on biomass production, but did affect biofilm thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538940PMC
http://dx.doi.org/10.3390/life11101046DOI Listing

Publication Analysis

Top Keywords

phototrophic biofilms
16
aerosol-based photobioreactor
8
cultivation phototrophic
8
surfaces biofilm
8
growth investigated
8
biofilm thickness
8
biofilms
5
characterization aerosol-based
4
photobioreactor cultivation
4
phototrophic
4

Similar Publications

Copper and zinc isotope fractionation during phototrophic biofilm growth.

Sci Total Environ

January 2025

Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia. Electronic address:

Copper (Cu) and zinc (Zn) are two trace metals that exhibit both limiting and toxic effects on aquatic microorganisms. However, in contrast to good knowledge of these metal interactions with individual microbial cultures, the biofilm, complex natural consortium of microorganisms, remains poorly understood with respect to its control on Cu and Zn in the aquatic environments. Towards constraining the magnitude and mechanisms of Cu and Zn isotope fractionation in the presence of phototrophic biofilms composed of different proportion of diatoms, green algae and cyanobacteria, we studied long-term growth in a rotating annular bioreactor and quantified the uptake of metals and their isotope fractionation at environmentally-relevant Cu and Zn concentrations.

View Article and Find Full Text PDF

This research looked at how three different light intensities (1600, 4300, and 7200 lx) affect the biomass development, treatment of fuel synthesis wastewater and the recovery of valuable bioproducts between biofilm and suspended growth in a purple-bacteria enriched photobioreactor. Each condition was run in duplicate using an agricultural shade cloth as the biofilm support media in a continuously mixed batch reactor. The results showed that the highest chemical oxygen demand (COD) removal rate (56.

View Article and Find Full Text PDF

ComFB, a new widespread family of c-di-NMP receptor proteins.

bioRxiv

November 2024

Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence "Controlling Microbes to Fight Infections", Eberhard Karls University of Tübingen, 72076 Tübingen, Germany.

Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger that controls a variety of cellular functions, including protein and polysaccharide secretion, motility, cell division, cell development, and biofilm formation, and contributes to the virulence of some important bacterial pathogens. While the genes for diguanylate cyclases and c-di-GMP hydrolases (active or mutated) can be easily identified in microbial genomes, the list of c-di-GMP receptor domains is quite limited, and only two of them, PliZ and MshEN, are found across multiple bacterial phyla. Recently, a new c-di-GMP receptor protein, named CdgR or ComFB, has been identified in cyanobacteria and shown to regulate their cell size and, more recently, natural competence.

View Article and Find Full Text PDF

Recent studies are showing that some lights suitable for illuminating the urban fabric (i.e. that do not include the red, green and blue sets of primary colours) may halt biological colonisation on monuments, mainly that caused by phototrophic subaerial biofilms (SABs), which may exacerbate the biodeterioration of substrates.

View Article and Find Full Text PDF

Reducing greenhouse gas emissions is critical for humanity nowadays, but it can be beneficial by developing engineered systems that valorize CO into commodities, thus mimicking nature's wisdom. Purple phototrophic bacteria (PPB) naturally accept CO into their metabolism as a primary redox sink system in photo-heterotrophy. Dedicated use of this feature for developing sustainable processes (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!