Flexural Behavior of Natural Hybrid FRP-Strengthened RC Beams and Strain Measurements Using BOTDA.

Polymers (Basel)

Center of Excellence in Earthquake Engineering and Vibration, Department of Civil Engineering, Chulalongkorn University, Bangkok 10330, Thailand.

Published: October 2021

Experimental and finite element analysis results of reinforced concrete beams under monotonic loading were presented in this study. In the experimental program, one beam was tested in an as-built condition. The other two beams were strengthened using natural hybrid FRP layers in different configurations. The natural hybrid FRP composite was developed by using natural jute FRP and basalt FRP. One of the most appealing advantages of natural fiber is its beneficial impact on the environment, which is necessary for the sustainability recognition as an alternative to synthetic FRP. The hybrid FRP was applied to the bottom concrete surface in one beam, while a U-shaped strengthening pattern was adopted for the other beam. The flexural behavior of each beam was assessed through strain measurements. Each beam was incorporated with conventional strain gages, as well as the Brillouin Optical Time Domain Analysis (BOTDA) technique. BOTDA has its exclusive advantages due to its simple system architecture, easy implementation, measurement speed, and cross-sensitivity. The experimental results revealed that the beam strengthened with the U-shaped hybrid FRP composite pattern had a better flexural response than the other counterpart beams did both in terms of peak loads and maximum bottom longitudinal steel bar strains. Beams B-01 and B-02 exhibited 20.5% and 28.4% higher energy dissipation capacities than the control beam did, respectively. The ultimate failure of the control beam was mainly due to the flexural cracks at very low loads, whereas the ultimate failure mode of FRP composite-strengthened beams was due to the rupture of the hybrid FRP composite. Further, strain measurements using BOTDA exhibited similar patterns as conventional strain gage measurements did. However, it was concluded that BOTDA measurements were substantially influenced by the bottom flexural cracks, ultimately resulting in shorter strain records than those of conventional strain gages. Nonlinear structural analysis of the beams was performed using the computer program ATENA. The analytical results for the control beam specimen showed a close match with the corresponding experimental results mainly in terms of maximum deflection. However, the analytical peak load was slightly higher than the corresponding experimental value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538201PMC
http://dx.doi.org/10.3390/polym13203604DOI Listing

Publication Analysis

Top Keywords

hybrid frp
20
natural hybrid
12
strain measurements
12
frp composite
12
conventional strain
12
control beam
12
beam
9
frp
9
flexural behavior
8
measurements botda
8

Similar Publications

Interaction Between Concrete and FRP Laminate in Structural Members Composed of Reused Wind Turbine Blades Filled with Concrete.

Materials (Basel)

December 2024

Department of Building Structures and Structural Mechanics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland.

The lifecycle of wind turbine blades is around 20-25 years. This makes studies on the reuse of dismantled blades an urgent need for our generation; however, their recycling is very difficult due to the specific makeup of their composite material. In this study, the authors determined a concept for the reuse of turbine blade sections filled with concrete for geotechnical structures, retaining the walls, piles, or parts of their foundations.

View Article and Find Full Text PDF

Experimental Investigation on Bending Properties of DP780 Dual-Phase Steel Strengthened by Hybrid Polymer Composite with Aramid and Carbon Fibers.

Polymers (Basel)

November 2024

Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.

Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, there is increasing interest in hybrid structures obtained through adhesive bonding of high-performance fiber-reinforced polymers (FRPs) to high-strength steel sheets.

View Article and Find Full Text PDF

This research proposes a day-ahead scheduling utilizing both demand side management (DSM), and Energy Management (EM) in a grid-tied nanogrid comprises of photovoltaic, battery, and diesel generator for optimizing the generation cost and the energy not supplied (at grid-outage). Wider terminology is introduced to combine both load controllability (considered in traditional DSM), and interval capability to accommodate additional loads defined as flexible, non-flexible, and semi-flexible intervals. Moreover, the user selection for EM or combined operation of EM with DSM at different degrees of interval flexibility is defined as user preference.

View Article and Find Full Text PDF

Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored.

View Article and Find Full Text PDF

Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!