A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of pH-Sensitive Chitosan--poly(acrylamide--acrylic acid) Hydrogel for Controlled Drug Delivery of Tenofovir Disoproxil Fumarate. | LitMetric

The present study aimed to develop a pH-sensitive chitosan-based hydrogel for controlled delivery of an anti-hepatitis B drug, tenofovir disoproxil fumarate (TDF). Free radical polymerization was utilized to graft acrylamide and acrylic acid using ,-methylene bisacrylamide as the crosslinker. Physicochemical characterization confirmed the synthesis of thermally stable chitosan-g-poly(acrylamide-co-acrylic acid) hydrogels with well-defined pores within a fibrous surface. The prepared hydrogels exhibited pH and ionic strength sensitivity, with the swelling significantly lower under acidic and strong ionic strength conditions but higher in neutral and basic solutions. In addition, cytotoxicity studies on HeLa cell lines proved the cytocompatibility of the drug delivery material and its readiness for physiological applications. The encapsulation of TDF in the hydrogels was optimized and an encapsulation efficiency and a drug loading percentage of 96% and 10% were achieved, respectively. More interestingly, in vitro release studies demonstrated a pH-dependent release of TDF from hydrogels. The release at pH 7.4 was found to be up to five times higher than at pH 1.2 within 96 h. This further suggested that the newly developed hydrogel-loaded TDF could be proposed as a smart delivery system for oral delivery of anti-hepatitis B drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541207PMC
http://dx.doi.org/10.3390/polym13203571DOI Listing

Publication Analysis

Top Keywords

hydrogel controlled
8
drug delivery
8
tenofovir disoproxil
8
disoproxil fumarate
8
delivery anti-hepatitis
8
ionic strength
8
tdf hydrogels
8
delivery
5
development ph-sensitive
4
ph-sensitive chitosan--polyacrylamide--acrylic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!