Bioactive polypropylene (PP) films with active agents) presence for food packaging application have been prepared and characterized. The novel modified PP films were obtained via PP/additives systems regranulation and cast extrusion. The influence of two types of plasticizers (natural agents as well as commercial synthetic product) and bioactive additives on final features, e.g., mechanical properties, was evaluated. Moreover, the biocidal activity of the films was determined. Due to their functional properties, they are developed as additives to packaging plastic materials such as polyolefins. The study results presented in our work may indirectly contribute to environmental protection by reducing food waste. The aim of the work was to obtain innovative, functional packaging materials with an ability to prolong the shelf life of food products. The best antimicrobial properties were observed for the sample based on 5 wt.% oregano oil (OO) and 5 wt.% cedar oil (OC) in PP matrix. A microbial test revealed that the system causes total reduction in the following microorganisms: , , , , , ,
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538041 | PMC |
http://dx.doi.org/10.3390/polym13203478 | DOI Listing |
Acta Biomater
December 2024
School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, China. Electronic address:
Postoperative adhesion (PA) caused by the combination of proteins, inflammatory response and bacterial infection poses substantial challenges for polypropylene meshes (PPMs) based hernioplasty. Herein, inspired by the peritoneum, a Janus PPMs with side-specific functions was developed via a surface-initiated photoiniferter-mediated polymerization technology. A physical barrier composed of zwitterionic polymer brushes (PS) was firstly constructed on the one side of the PPMs, while the polymethacrylic acid (PMAA) brushes acting as the linker for bioactive nanoparticles (HAP) were precisely situated on the opposite surface subsequently.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
December 2024
BEST/CB3S, Université Sorbonne Paris Nord, Villetaneuse, France.
ACS Mater Au
November 2024
National Metal and Materials Technology Center, National Science and Technology Development Agency, Khlong Luang 12120, Thailand.
This investigation developed new composite bone cements using urethane dimethacrylate (UDMA), poly(propylene glycol) dimethacrylate (PPGDMA), and hydroxyethyl methacrylate (HEMA), with micrometer-sized aluminosilicate glass filler. Monocalcium phosphate monohydrate (MCPM) and hydroxyapatite (HA) particles were added to enhance biological performance, particularly osteo-immunomodulation. Free radical polymerization was triggered by mixing two pastes containing either benzoyl peroxide (BPO, an initiator) or N-tolyglycine glycidyl methacrylate (NTGGMA, an activator).
View Article and Find Full Text PDFChemosphere
October 2024
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA. Electronic address:
Environmental microplastics (MPs) are complex mixtures of plastic polymers and sorbed chemical pollutants with high degrees of heterogeneity, particularly in terms of particle size, morphology and degree of weathering. Currently, limitations exist in sampling sufficient amounts of environmental particles for laboratory studies to assess toxicity endpoints with statistical rigor and to examine chemical pollutant interactions. This study seeks to bridge this gap by investigating environmental plastic particle mimetics and pollutant-polymer interactions by mixing polymer particles with persistent organic pollutants (POPs) at set concentrations over time.
View Article and Find Full Text PDFMolecules
August 2024
Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Bone tissue exhibits self-healing properties; however, not all defects can be repaired without surgical intervention. Bone tissue engineering offers artificial scaffolds, which can act as a temporary matrix for bone regeneration. The aim of this study was to manufacture scaffolds made of poly(lactic acid), poly(ε-caprolactone), poly(propylene fumarate), and poly(ethylene glycol) modified with bioglass, beta tricalcium phosphate (TCP), and/or wollastonite (W) particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!