A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Crystallisation, Microphase Separation and Mechanical Properties of the Mixture of Ether-Based TPU with Different Ester-Based TPUs. | LitMetric

The difference in compatibility at the molecular level can lead to a change of microphase separation structure of thermoplastic polyurethanes blend systems, which will improve their thermal and mechanical properties. In this study, TDI-polyester based TPU was blended with MDI-polyether-based TPU and MDI-polyester based TPU, with different ratios. In the blend system, the obvious reduction of the melting temperature of the high-temperature TDI-polyester based TPU component indicates its hard segments can be mutually integrated with the other component. For TDI-polyester based TPU/MDI-polyether based TPU blends, their similar hard segment ratio and similar chemical structure of the soft segment give the molecular chains of the two components better compatibility. The aggregation structure of the two kinds of chains can rearrange at the molecular level which makes the hard domains mutually integrate to form a new phase separation structure with larger phase region distance. As a result, the yield strength of this blend increased by almost 143% when the elongation at break was only reduced by 12%. In contrast, the other group of blends still partly maintain their respective micro domains, forming a weak interface and leading to a decreased of elongation at break.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538422PMC
http://dx.doi.org/10.3390/polym13203475DOI Listing

Publication Analysis

Top Keywords

based tpu
16
tdi-polyester based
12
microphase separation
8
mechanical properties
8
molecular level
8
separation structure
8
elongation break
8
tpu
6
based
5
crystallisation microphase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!