Various effects caused by surface plasmons including enhanced electromagnetic field, local heating, and excited electrons/holes can not only redistribute the electromagnetic field in the time domain and space but also redistribute the excited carriers and drive chemical reactions. In this study, firstly, an Au nanoporous array photocatalyst with the arrayed gauge was prepared by means of the anodic alumina template. Then, the formation of 4,4'-dimercaptoazobenzene (DMAB) by the surface plasmon-driven photocatalysis under 633 nm laser irradiation was investigated by means of Raman spectroscopy using aminothiophenol (PATP) as a probe molecule on gold nananoporous arrays. In addition, sodium borohydride was introduced in situ to realize the reverse photocatalytic reaction driven by the surface plasma. With the help of FDTD software, the plasma distribution characteristics on the surface of Au nanoporous arrays were simulated and analyzed. Through this practical method, it is expected to draw specific graphics, letters, and Chinese characters on the micro/nano scale, and realize the functions of graphics drawing, information encryption, reading, and erasing on the micro/nano scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540139 | PMC |
http://dx.doi.org/10.3390/nano11102710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!