Developing high-performance tungsten plasma-facing materials for fusion reactors is an urgent task. In this paper, novel nanochannel structural W films prepared by magnetron sputtering deposition were irradiated using a high-power pulsed electron beam or ion beam to study their edge-localized modes, such as transient thermal shock resistance. Under electron beam irradiation, a 1 μm thick nanochannel W film with 150 watt power showed a higher absorbed power density related cracking threshold (0.28-0.43 GW/m) than the commercial bulk W (0.16-0.28 GW/m) at room temperature. With ion beam irradiation with an energy density of 1 J/cm for different pulses, the bulk W displayed many large cracks with the increase of pulse number, while only micro-crack networks with a width of tens of nanometers were found in the nanochannel W film. For the mechanism of the high resistance of nanochannel W films to transient thermal shock, a residual stress analysis was made by Grazing-incidence X-ray diffraction (GIXRD), and the results showed that the irradiated nanochannel W films had a much lower stress than that of the irradiated bulk W, which indicates that the nanochannel structure can release more stress, due to its special nanochannel structure and ability for the annihilation of irradiation induced defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537346 | PMC |
http://dx.doi.org/10.3390/nano11102663 | DOI Listing |
Adv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Nat Prod Bioprospect
January 2025
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!