Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540299 | PMC |
http://dx.doi.org/10.3390/nano11102593 | DOI Listing |
J Taibah Univ Med Sci
December 2024
King Saud Medical City, Ministry of Health & College of Medicine, Alfaisal University Riyadh, KSA.
KSA is transforming its healthcare system by developing and implementing Clinical Practice Guidelines (CPGs), a tool designed to improve patient outcomes, standardize care, and facilitate evidence-based decision-making. CPGs are crucial in addressing healthcare disparities, thereby promoting health equity and patient experience. They are integral to KSA's healthcare transformation agenda.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!