Monolayer (ML)-scale GaN/AlN multiple quantum well (MQW) structures for electron-beam-pumped ultraviolet (UV) emitters are grown on -sapphire substrates by using plasma-assisted molecular beam epitaxy under controllable metal-rich conditions, which provides the spiral growth of densely packed atomically smooth hillocks without metal droplets. These structures have ML-stepped terrace-like surface topology in the entire QW thickness range from 0.75-7 ML and absence of stress at the well thickness below 2 ML. Satisfactory quantum confinement and mitigating the quantum-confined Stark effect in the stress-free MQW structures enable one to achieve the relatively bright UV cathodoluminescence with a narrow-line (~15 nm) in the sub-250-nm spectral range. The structures with many QWs (up to 400) exhibit the output optical power of ~1 W at 240 nm, when pumped by a standard thermionic-cathode (LaB) electron gun at an electron energy of 20 keV and a current of 65 mA. This power is increased up to 11.8 W at an average excitation energy of 5 µJ per pulse, generated by the electron gun with a ferroelectric plasma cathode at an electron-beam energy of 12.5 keV and a current of 450 mA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537242PMC
http://dx.doi.org/10.3390/nano11102553DOI Listing

Publication Analysis

Top Keywords

gan/aln multiple
8
multiple quantum
8
spectral range
8
mqw structures
8
electron gun
8
kev current
8
monolayer-scale gan/aln
4
quantum wells
4
wells high
4
high power
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!