A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronously Strengthen and Toughen Polypropylene Using Tartaric Acid-Modified Nano-CaCO. | LitMetric

Synchronously Strengthen and Toughen Polypropylene Using Tartaric Acid-Modified Nano-CaCO.

Nanomaterials (Basel)

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.

Published: September 2021

In order to overcome the challenge of synchronously strengthening and toughening polypropylene (PP) with a low-cost and environmental technology, CaCO (CC) nanoparticles are modified by tartaric acid (TA), a kind of food-grade complexing agent, and used as nanofillers for the first time. The evaluation of mechanical performance showed that, with 20 wt.% TA-modified CC (TAMCC), the impact toughness and tensile strength of TAMCC/PP were 120% and 14% more than those of neat PP, respectively. Even with 50 wt.% TAMCC, the impact toughness and tensile strength of TAMCC/PP were still superior to those of neat PP, which is attributable to the improved compatibility and dispersion of TAMCC in a PP matrix, and the better fluidity of TAMCC/PP nanocomposite. The strengthening and toughening mechanism of TAMCC for PP involves interfacial debonding between nanofillers and PP, and the decreased crystallinity of PP, but without the formation of β-PP. This article presents a new applicable method to modify CC inorganic fillers with a green modifier and promote their dispersion in PP. The obtained PP nanocomposite simultaneously achieved enhanced mechanical strength and impact toughness even with high content of nanofillers, highlighting bright perspective in high-performance, economical, and eco-friendly polymer-inorganic nanocomposites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540848PMC
http://dx.doi.org/10.3390/nano11102493DOI Listing

Publication Analysis

Top Keywords

impact toughness
12
strengthening toughening
8
tamcc impact
8
toughness tensile
8
tensile strength
8
strength tamcc/pp
8
synchronously strengthen
4
strengthen toughen
4
toughen polypropylene
4
polypropylene tartaric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!