The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537472PMC
http://dx.doi.org/10.3390/molecules26206306DOI Listing

Publication Analysis

Top Keywords

heteroatom doped
8
polycyclic aromatic
8
aromatic hydrocarbons
8
bottom-up approach
8
atomically precise
8
doped nanographenes
8
doping heteroatoms
8
novel synthetic
4
synthetic approach
4
approach heteroatom
4

Similar Publications

Doping with non-metallic heteroatom is an effective approach to tailor the electronic structure of Ni for enhancing its alkaline hydrogen oxidation reaction (HOR) catalytic performance. However, the modulation of HOR activity of Ni by lattice carbon (LC) atoms has rarely been reported, especially to reveal the rule between the doping effect and activity caused by the content of LC atoms. Here, hydrogen is proposed as a scavenger for LC atoms in the pyrolytic reduction process to finely control the content of LC atoms in Ni.

View Article and Find Full Text PDF

The utilization of polyoxometalate-based materials is largely dictated by their redox properties. Detailed understanding of the thermodynamic and kinetic efficiency of charge transfer is therefore essential to the development of polyoxometalate-based systems for target applications. Toward this end, we report electrochemical studies of a series of heteroatom-doped Keggin-type polyoxotungstate clusters [PWO] ( ), [VWO] ( ), [P(VW)O] ( ), and [V(VW)O] ( ) to elucidate the role of the identity and spatial location of heteroatoms and overall cluster charge on the rate constants of electron transfer and redox reaction entropies.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Atomic-level Ru-Ir mixing in rutile-type (RuIr)O for efficient and durable oxygen evolution catalysis.

Nat Commun

January 2025

Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.

The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks.

View Article and Find Full Text PDF

Dual heteroatom-doped porous biochar from chitosan/lignosulfonate gels for enhanced removal of tetracycline by persulfate activation: Performance and mechanism.

Int J Biol Macromol

January 2025

School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:

Rational design of carbon material structures is essential for enhancing the performance of persulfate-based advanced oxidation processes (PS-AOPs) in water purification. In this study, a self-doping and self-templating strategy was devised to produce N, S co-doped biochar catalysts through pre-cryocrushing and carbonization procedures employing chitosan (N-source) and lignosulfonate (S-source) derived from biomass waste. The as-synthesized materials exhibited excellent performance in removing tetracycline (TC) through a synergistic process of adsorption and catalytic activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!