Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization.

Molecules

Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.

Published: October 2021

In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540238PMC
http://dx.doi.org/10.3390/molecules26206267DOI Listing

Publication Analysis

Top Keywords

aie
9
controlled polymerization
8
small molecules
8
well-defined aie
8
aie polymer
8
controlling molecular
4
molecular aggregation-induced
4
aggregation-induced emission
4
emission controlled
4
polymerization
4

Similar Publications

Dimethylacridine based emitters for non-doped organic light-emitting diodes with improved efficiency.

Chem Asian J

January 2025

Fujian Agriculture and Forestry University, College of Materials Engineering, No. 63, Xiyuangong Road, Minhou County, 350108, Fuzhou, CHINA.

Organic light-emitting diodes (OLEDs) has been attracting much extensive interest owing to their advantages of high-definition and flexible displays. Many advances have been focused on boosting the efficiency and stability. Two innovative dimethylacridine-based emitters,1,1,2,2-tetrakis(4- (2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl ethene (AcTPE), and bis(4-(2,7-di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (Ac2BP) were designed and synthesized, in which TPE-baesed AcTPE presents AIE properties, and with the phenyl as spacer between the DMAC and carbony, aryl-ketone-based Ac2BP doesn't show AIE properties due to the absence of restriction of intramolecular rotations.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Circularly polarized organic light-emitting diodes (CP-OLEDs) have significant promise for naked-eye 3D displays. However, most devices are fabricated using vacuum deposition technology, and development of efficient solution-processed CP-OLEDs, particularly those exhibiting low efficiency roll-off, remains a formidable challenge. This research successfully designed and synthesized two pairs of thermally activated delayed fluorescence (TADF) enantiomers through isomer engineering, namely (R/S)-N-5-TPA and (R/S)-N-4-TPA, which features fifth and fourth substitution sites of phthalimide (acceptor) by tri-phenylamine (donor), respectively.

View Article and Find Full Text PDF

Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids.

Molecules

December 2024

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex ().

View Article and Find Full Text PDF

Engineered Strategies for Lipid Droplets-Targeted AIEgens Based on Tetraphenylethene.

Molecules

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China.

Lipid droplets (LDs), once regarded as inert fat particles, have been ignored by scientific researchers for a long time. Now, studies have shown that LDs are dynamic organelles used to store neutral lipids in cells and maintain cell stability. The abnormality of intracellular LDs usually causes metabolic disorders in the body, such as obesity, atherosclerosis, diabetes, and cancer, so the LDs have attracted wide attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!