Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, we hypothesized that thiamine might also reduce whole-body fat and weight. To test it, we investigated the effects of high-dose thiamine treatment in sheep under overnutrition and calorie-restricted undernutrition to respectively induce positive energy balance (PEB) and negative energy balance (NEB). Eighteen mature ewes were randomly assigned to three treatment groups ( = 6 each). The control group (CG) was administered daily with subcutaneous saline, whereas the T5 and T10 groups were administered daily with equivoque of saline containing 5 mg/kg and 10 mg/kg of thiamine, respectively. Bodyweight and blood biochemistry were measured twice a week for a period of 22 days under PEB and for a consecutive 30 days under NEB. Surprisingly, despite the strong effect of thiamine on liver fat, no effect on body weight or blood glucose was detectable. Thiamine did, however, increase plasma concentration of non-esterified fatty acids (NEFA) during NEB (575.5 ± 26.7, 657.6 ± 29.9 and 704.9 ± 26.1 µEqL for CG, T5, and T10, respectively: < 0.05), thereby favoring utilization of fatty acids versus carbohydrates as a source of energy. Thiamine increased serum creatinine concentrations ( < 0.05), which paralleled a trending increase in urea ( = 0.09). This may indicate an increase in muscle metabolism by thiamine. Reduction of fat content by thiamine appears more specific to the liver than to adipose tissue. Additional studies are needed to evaluate the potential implications of high-dose vitamin B1 therapy in muscle metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540229 | PMC |
http://dx.doi.org/10.3390/nu13103463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!