A proportion of patients with COVID-19 have symptoms past the acute disease phase, which may affect quality of life. It is important for clinicians to be aware of this "long-COVID-19" syndrome to better diagnose, treat, and prevent it. We reviewed clinical and laboratory characteristics of a COVID-19 cohort in a Toronto, Ontario tertiary care center. Demographic, clinical, and laboratory data were collected, and patients were classified as "long-COVID-19" or "non-long-COVID-19" using consensus criteria. Of 397 patients who tested positive for COVID-19, 223 met inclusion criteria, and 62 (27%) had long-COVID-19. These patients had a similar age distribution compared to non-long-COVID-19 patients overall but were younger in the admitted long COVID-19 group. The long-COVID-19 group had more inpatients compared to the non-long-COVID-19 group (39% vs. 25%) and more frequent supplemental oxygen or mechanical ventilation use. However, long-COVID-19 patients did not differ by duration of mechanical ventilation, length of stay, comorbidities, or values of common laboratory tests ordered. The most frequent symptoms associated with long-COVID-19 were fatigue and weakness, as reported most commonly by the infectious disease, respirology and cardiology disciplines. In conclusion, by retrospective chart review, 27% of COVID-19 patients presenting to a tertiary care center in Toronto, Canada, were found to meet criteria for long-COVID-19. Past medical history and routine laboratory testing at presentation did not predict for long-COVID-19 development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537802PMC
http://dx.doi.org/10.3390/pathogens10101246DOI Listing

Publication Analysis

Top Keywords

long-covid-19 patients
12
clinical laboratory
12
patients
8
laboratory characteristics
8
tertiary care
8
care center
8
compared non-long-covid-19
8
mechanical ventilation
8
long-covid-19
6
laboratory
5

Similar Publications

Proteomic and metabolomic profiling of plasma uncovers immune responses in patients with Long COVID-19.

Front Microbiol

December 2024

Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China.

Long COVID is an often-debilitating condition with severe, multisystem symptoms that can persist for weeks or months and increase the risk of various diseases. Currently, there is a lack of diagnostic tools for Long COVID in clinical practice. Therefore, this study utilizes plasma proteomics and metabolomics technologies to understand the molecular profile and pathophysiological mechanisms of Long COVID, providing clinical evidence for the development of potential biomarkers.

View Article and Find Full Text PDF

The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.

View Article and Find Full Text PDF

: Severe and critical COVID-19 pneumonia can lead to long-term complications, especially affecting pulmonary function and immune health. However, the extent and progression of these complications over time are not well understood. This study aimed to assess lung function, radiological changes, and some immune parameters in survivors of severe and critical COVID-19 up to 12 months after hospital discharge.

View Article and Find Full Text PDF

Although COVID-19 is primarily known as a respiratory disease, there is growing evidence of neurological complications, such as ischemic stroke, in infected individuals. This study aims to evaluate the impact of COVID-19 on acute ischemic stroke (AIS) using radiomic features extracted from brain MR images and machine learning methods. This retrospective study included MRI data from 57 patients diagnosed with AIS who presented to the Department of Radiology at Hacettepe University Hospital between March 2020 and September 2021.

View Article and Find Full Text PDF

The S1 subunit of SARS-CoV-2 Spike is crucial for ACE2 recognition and viral entry into human cells. It has been found in the blood of COVID-19 patients and vaccinated individuals. Using BioGRID, I identified 146 significant human proteins that interact with S1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!