Urogenital schistosomiasis is caused by  () infection, which has been linked to the development of bladder cancer. In this study, three repurposing drugs, ivermectin, arteether and praziquantel, were screened to find the potent drug-repurposing candidate against the -associated bladder cancer (SABC) in humans by using computational methods. The biology of most glutathione S-transferases (GSTs) proteins and vascular endothelial growth factor (VEGF) is complex and multifaceted, according to recent evidence, and these proteins actively participate in many tumorigenic processes such as cell proliferation, cell survival and drug resistance. The VEGF and GSTs are now widely acknowledged as an important target for antitumor therapy. Thus, in this present study, ivermectin displayed promising inhibition of bladder cancer cells via targeting VEGF and GSTs signaling. Moreover, molecular docking and molecular dynamics (MD) simulation analysis revealed that ivermectin efficiently targeted the binding pockets of VEGF receptor proteins and possessed stable dynamics behavior at binding sites. Therefore, we proposed here that these compounds must be tested experimentally against VEGF and GST signaling in order to control SABC. Our study lies within the idea of discovering repurposing drugs as inhibitors against the different types of human cancers by targeting essential pathways in order to accelerate the drug development cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539496PMC
http://dx.doi.org/10.3390/medicina57101058DOI Listing

Publication Analysis

Top Keywords

bladder cancer
16
molecular docking
8
dynamics simulation
8
revealed ivermectin
8
-associated bladder
8
repurposing drugs
8
vegf gsts
8
vegf
5
docking dynamics
4
simulation revealed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!