The effectiveness of oral drug administration is related to the solubility of a drug in the gastrointestinal tract and its ability to penetrate the biological membranes. As most new drugs are poorly soluble in water, there is a need to develop novel drug carriers that improve the dissolution rate and increase bioavailability. The aim of this study was to analyze the modification of sulindac release profiles in various pH levels with two APTES ((3-aminopropyl)triethoxysilane)-modified SBA-15 (Santa Barbara Amorphous-15) silicas differing in 3-aminopropyl group content. Furthermore, we investigated the cytotoxicity of the analyzed molecules. The materials were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning and transmission electron microscopy, proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Sulindac loaded on the SBA-15 was released in the hydrochloric acidic medium (pH 1.2) and phosphate buffers (pH 5.8, 6.8, and 7.4). The cytotoxicity studies were performed on Caco-2 cell line. The APTES-modified SBA-15 with a lower adsorption capacity towards sulindac released the drug in a less favorable manner. However, both analyzed materials improved the dissolution rate in acidic pH, as compared to crystalline sulindac. Moreover, the SBA-15, both before and after drug adsorption, exhibited insignificant cytotoxicity towards Caco-2 cells. The presented study evidenced that SBA-15 could serve as a non-toxic drug delivery system that enhances the dissolution rate of sulindac and improves its bioavailability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537723 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13101693 | DOI Listing |
JACS Au
December 2024
Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.
View Article and Find Full Text PDFInt J Pharm
December 2024
Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China. Electronic address:
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Cystic echinococcosis (CE) is a common neglected parasitic disease. Nanoparticles containing drugs have been widely utilized in various formulations for several purposes, including improving the bioavailability of drugs by increasing the solubility and dissolution rate of the nanoparticles. The purpose of this study was to evaluate the effects of solid lipid nanoparticles containing albendazole and conjugated to albumin (B-SLN + ABZ) as a novel treatment approach for hydatid cysts in vivo.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!