Retention of Pollutants Elements from Mine Tailings of Lead in Geopolymers for Construction.

Materials (Basel)

Research Group TEP 222 "Materials and Mining Engineering", Higher Polytechnic School of Linares, University of Jaen, 23700 Linares, Spain.

Published: October 2021

The construction sector is one of the most demanding sectors of raw materials in existence today. As a consequence, the extraction of these materials has a significant impact on the environment. At the same time, mining activities produce a series of wastes, in some cases with polluting elements, which must be treated to avoid pollution. Therefore, the use of mining waste for the conformation of new construction materials is an important environmental advantage, even more so when such waste is prevented from producing polluting leachates. Therefore, in this research, geopolymers are developed with mine tailings from the Linares lead mines, chemically activated with potassium hydroxide. For this purpose, different percentages of the alkaline activator were tested and the physical and mechanical properties of the conformed materials were evaluated. The analysis of the different conformed geopolymers determined the optimum percentage of potassium hydroxide for conforming the geopolymer with the best mechanical and physical properties. In addition, the concentration in the leachate of potentially contaminating chemical elements in the mining waste was estimated to be lower than those regulated by the regulations. Consequently, this research shows the development of a sustainable material for construction with mining waste and reduction of the environmental impact of traditional products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540991PMC
http://dx.doi.org/10.3390/ma14206184DOI Listing

Publication Analysis

Top Keywords

mining waste
12
mine tailings
8
potassium hydroxide
8
retention pollutants
4
pollutants elements
4
elements mine
4
tailings lead
4
lead geopolymers
4
construction
4
geopolymers construction
4

Similar Publications

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Dynamic Methane Emissions from China's Fossil-Fuel and Food Systems: Socioeconomic Drivers and Policy Optimization Strategies.

Environ Sci Technol

January 2025

State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.

In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.

View Article and Find Full Text PDF

Experimental investigations of colloid-associated metal mobility in mine-impacted wetland sediment.

Heliyon

January 2025

Department of Earth Sciences, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.

Metal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.

View Article and Find Full Text PDF

Metastable fcc-Ru/fcc-RuO Heterointerphase for Hydrogen Evolution.

Inorg Chem

January 2025

School of Materials and Physics and Center of Mineral Resource Waste Recycling, Jiangsu Key Laboratory for Clean Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

The metastable crystal structure is difficult to synthesize and maintain but normally acts as special active sites with improved functional properties. Herein, a moderate crystallographic transformation strategy is used to effectively synthesize metastable RuO. By controlling the degree of oxidation, we constructed different heterophase Ru/RuO catalysts.

View Article and Find Full Text PDF

Limestone mining waste and its derived CaO were checked as an adsorbents of pb, Cu, and Cd ions from water solution. The characterization of Limestone and calcined limestone was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), and Surface area measurements (BET). The optimum conditions of sorbent dosage, pH, initial concentration, and contact time factors were investigated for pristine limestone and calcined limestone absorbents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!