The aim of this article is to predict the compressive strength of environmentally friendly concrete modified with eggshell powder. For this purpose, an optimized artificial neural network, combined with a novel metaheuristic shuffled frog leaping optimization algorithm, was employed and compared with a well-known genetic algorithm and multiple linear regression. The presented results confirm that the highest compressive strength (46 MPa on average) can be achieved for mix designs containing 7 to 9% of eggshell powder. This means that the strength increased by 55% when compared to conventional Portland cement-based concrete. The comparative results also show that the proposed artificial neural network, combined with the novel metaheuristic shuffled frog leaping optimization algorithm, offers satisfactory results of compressive strength predictions for concrete modified using eggshell powder concrete. Moreover, it has a higher accuracy than the genetic algorithm and the multiple linear regression. This finding makes the present method useful for construction practice because it enables a concrete mix with a specific compressive strength to be developed based on industrial waste that is locally available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540916PMC
http://dx.doi.org/10.3390/ma14206172DOI Listing

Publication Analysis

Top Keywords

compressive strength
20
eggshell powder
16
concrete modified
12
modified eggshell
12
optimization algorithm
12
strength environmentally
8
environmentally friendly
8
friendly concrete
8
artificial neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!