Cement grouting material is one of the most important materials in civil construction at present, for seepage prevention, rapid repair, and reinforcement. To achieve the ever-increasing functional requirements of civil infrastructures, cement grouting materials must have the specific performance of high fluidization, early strength, and low shrinkage. In recent years, nanomaterials have been widely used to improve the engineering performance of cement grouting materials. However, the mechanisms of nanomaterials in grouting materials are not clear. Hence, a high-fluidization, early strength cement grouting material, enhanced by nano-SiO, is developed via the orthogonal experimental method in this study. The mechanisms of nano-SiO on the microstructure and hydration products of the HCGA, in the case of different curing ages and nano-SiO contents, are analyzed through scanning electron microscopy tests, X-ray diffraction tests, differential scanning calorimetry tests, and Fourier transform infrared spectroscopy tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537541 | PMC |
http://dx.doi.org/10.3390/ma14206144 | DOI Listing |
Materials (Basel)
January 2025
College of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.
View Article and Find Full Text PDFSci Rep
January 2025
School of civil engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China.
This article uses the engineering background of the Zhengzhou Metro Line 5 with a cement-soil group pile composite foundation. It simplifies the composite foundation using the area-weighted composite modulus method and establishes a finite element model of a double-line EPBM passing beneath the cement-soil group pile composite foundation building. The calculation results were compared and validated against monitoring data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
China Railway Seventh Group Co., Ltd., Zhengzhou 450016, China.
This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!