Effect of Microstructure on Thermophysical Properties of Heat-Treated Duplex Steel.

Materials (Basel)

Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.

Published: October 2021

AI Article Synopsis

Article Abstract

The purpose of this study is to investigate the effect of heat treatments and resulting changes in microstructure on the thermophysical properties of commercial 1.4462 duplex stainless steel. Three types of heat treatment and a raw sample were used. In the first heat treatment, a duplex steel bar was annealed in an air atmosphere furnace for one hour at 1200 °C and then quickly cooled in water (1200 °C + water). The second heat treatment was the same as the first, but afterwards, the bar was annealed in an air atmosphere furnace for 4 h at 800 °C and then slowly cooled down in the furnace to room temperature (1200 °C + water + 800 °C). In the third heat treatment, the duplex steel bar was annealed in the furnace in an air atmosphere for one hour at 900 °C and then slowly cooled in the furnace to room temperature (900 °C). As a result, the weight percentages of ferrite and austenite in the samples achieved the following ratios: 75:25, 65:35 and 44:56. Light microscope examinations (LM), scanning electron microscopy (SEM), Vickers micro-hardness measurements and thermophysical studies using a laser flash apparatus (LFA), differential scanning calorimetry (DSC) and push-rod dilatometry (DIL) were performed to reveal the microstructure and changes in thermophysical properties including thermal diffusivity, thermal conductivity, thermal expansion and specific heat. Along with presenting these data, the paper, in brief, presents the applied investigation procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538189PMC
http://dx.doi.org/10.3390/ma14206043DOI Listing

Publication Analysis

Top Keywords

heat treatment
16
thermophysical properties
12
duplex steel
12
bar annealed
12
air atmosphere
12
1200 °c
12
microstructure thermophysical
8
treatment duplex
8
steel bar
8
annealed air
8

Similar Publications

A carbon nanotube (CNT) composite is an effective method to improve the thermoelectricity of materials. However, the depletion layer between the CNT and thermoelectric (TE) material always decreases the contribution of CNT to the conductivity of the TE material. It is important to eliminate the depletion layer for improving the TE properties.

View Article and Find Full Text PDF

Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complex endocrine-metabolic disorder, and multiple factors contribute to its pathophysiology. The current study assessed a PCOS-like animal model induced by consuming a high-fat sugar (HFHS) diet and compared the treatment outcome of mitochondrial-targeted antioxidants versus heat therapy. Sixty rats were divided into the following study groups: three control groups (negative and positive for the treatments used), HFHS, hot tub therapy (HTT) treatment, and MitoQ10 treatment (500 µmol/L MitoQ10 in clean drinking water daily, from week fourteen till week twenty-two of the study).

View Article and Find Full Text PDF

Heat-shock protein 90 (HSP90) is a highly active molecular chaperone that plays a crucial role in cellular function. It facilitates the folding, assembly and stability of various oncogenic proteins, particularly kinases and transcription factors involved in regulating tumor growth and maintenance signaling pathways. Consequently, HSP90 inhibitors are being explored as drugs for cancer therapy.

View Article and Find Full Text PDF

Background: Heat stroke, a severe heat illness with organ damage, is a major cause of cause irreparable organ damage and higher death rates among military persons and athletes.

Objectives: To study the changes in blood lactate (Lac) levels and lactate clearance rate (LCR) in athletes with heat illness of varying degrees after high-intensity exercise and to evaluate their prognostic value.

Material And Methods: In present study, acute care unit admitted 36 heat sickness patients following high-intensity exercise from December 2019 to July 2024, with comprehensive medical records, for retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!