Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics.

Micromachines (Basel)

Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Korea.

Published: October 2021

In this study, we propose high-performance chitosan-based flexible memristors with embedded single-walled carbon nanotubes (SWCNTs) for neuromorphic electronics. These flexible transparent memristors were applied to a polyethylene naphthalate (PEN) substrate using low-temperature solution processing. The chitosan-based flexible memristors have a bipolar resistive switching (BRS) behavior due to the cation-based electrochemical reaction between a polymeric chitosan electrolyte and mobile ions. The effect of SWCNT addition on the BRS characteristics was analyzed. It was observed that the embedded SWCNTs absorb more metal ions and trigger the conductive filament in the chitosan electrolyte, resulting in a more stable and wider BRS window compared to the device with no SWCNTs. The memory window of the chitosan nanocomposite memristors with SWCNTs was 14.98, which was approximately double that of devices without SWCNTs (6.39). Furthermore, the proposed SWCNT-embedded chitosan-based memristors had memristive properties, such as short-term and long-term plasticity via paired-pulse facilitation and spike-timing-dependent plasticity, respectively. In addition, the conductivity modulation was evaluated with 300 synaptic pulses. These findings suggest that memristors featuring SWCNT-embedded chitosan are a promising building block for future artificial synaptic electronics applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541661PMC
http://dx.doi.org/10.3390/mi12101259DOI Listing

Publication Analysis

Top Keywords

chitosan-based flexible
12
flexible memristors
12
memristors embedded
8
carbon nanotubes
8
neuromorphic electronics
8
chitosan electrolyte
8
memristors
7
swcnts
5
chitosan-based
4
embedded carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!