Tris(8-hydroxyquinoline) aluminum complexes are of significant interest because of their remarkable optical and electrical properties, both as an emissive layer and electron injection layer. They emit light in the blue and green ranges of the visible spectrum, so for white organic light emitting diodes (OLEDs), yellow emission is required as well. In this study, we propose the use of zinc oxide quantum dots to tune the emission color of the complex while maintaining its luminous efficiency. Hence, tris(8-hydroxyquinoline) aluminum-zinc oxide nanohybrids with different zinc oxide quantum dots concentrations (10, 20, or 30 wt.%) were synthesized. The structural properties were characterized using powder X-ray diffraction analysis, while the composition and optical characteristics were characterized by Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, and photoluminescence emission spectroscopy. The results show that increased levels of zinc oxide quantum dots lead to a decrease in crystallinity, double hump emission and a slight red shift in emission peaks. Also, at 20 and 30 wt.% of zinc oxide quantum dots concentrations, yellow emission was observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538630 | PMC |
http://dx.doi.org/10.3390/mi12101173 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LPHE-MS, Faculty of Science, Mohammed V University in Rabat, Morocco.
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India.
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!