Although childhood acute lymphoblastic leukemia (ALL) is curable, global disparities in treatment outcomes remain. To reduce these global disparities in low-middle income countries (LMIC), a paradigm shift is needed: start with curing low-risk ALL. Low-risk ALL, which accounts for >50% of patients, can be cured with low-toxicity therapies already defined by collaborative studies. We reviewed the components of these low-toxicity regimens in recent clinical trials for low-risk ALL and suggest how they can be adopted in LMIC. In treating childhood ALL, the key is risk stratification, which can be resource stratified. NCI standard-risk criteria (age 1-10 years, WBC < 50,000/uL) is simple yet highly effective. Other favorable features such as , hyperdiploidy, early peripheral blood and bone marrow responses, and simplified flow MRD at the end of induction can be added depending on resources. With limited supportive care in LMIC, more critical than relapse is treatment-related morbidity and mortality. Less intensive induction allows early marrow recovery, reducing the need for intensive supportive care. Other key elements in low-toxicity protocol designs include: induction steroid type; high-dose versus low-dose escalating methotrexate; judicious use of anthracyclines; and steroid pulses during maintenance. In summary, the first effective step in curing ALL in LMIC is to focus on curing low-risk ALL with less intensive therapy and less toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540602 | PMC |
http://dx.doi.org/10.3390/jcm10204728 | DOI Listing |
Exp Hematol Oncol
January 2025
Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
Background: Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited.
Methods: This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS).
Clin Lymphoma Myeloma Leuk
December 2024
Department of Intensive Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. Electronic address:
Background: Invasive fungal disease (IFD) poses significant challenges for critically ill patients with hematological malignancies (HMs). However, there is limited research on the clinical characteristics, risk factors, and outcomes of IFD within this population.
Method: A retrospective study was conducted at a tertiary center in China.
FEBS J
January 2025
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Endocrinology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
Hyperparathyroidism-jaw tumor syndrome is a rare form of syndromic primary hyperparathyroidism. We describe a young female with a history of common precursor B acute lymphoblastic leukaemia who was diagnosed with overt primary hyperparathyroidism due to a pathogenic CDC73 variant (c.25C > T).
View Article and Find Full Text PDFInt J Cancer
January 2025
Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
T-cell acute lymphoblastic leukaemia (T-ALL) is a rare aggressive haematological malignancy characterised by the clonal expansion of immature T-cell precursors. It accounts for 15% of paediatric and 25% of adult ALL. T-ALL is associated with the overexpression of major transcription factors (TLX1/3, TAL1, HOXA) that drive specific transcriptional programmes and constitute the molecular classifying subgroups of T-ALL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!