Recent studies have highlighted the association between ocular diseases and microbiota profiles of the host intestinal tract and oral cavity. There is mounting evidence supporting the existence of a 'gut-eye axis', whereby changes in gut microbiome alter host immunity, with consequential implications for ocular health and disease. In this review, we examined recent published findings on the association between gut microbiome and ocular morbidity, based on 25 original articles published between 2011 to 2020. The review included both clinical and in vivo animal studies, with particular focus on the influence of the microbiome on host immunity and metabolism. Significant associations between altered intestinal microbiome and specific ocular diseases and pathological processes, including Behçet's syndrome, autoimmune uveitis, age-related macular degeneration, choroidal neovascularization, bacterial keratitis, and Sjögren-like lacrimal keratoconjunctivitis have been demonstrated. Furthermore, alterations in the gut microbiome resulted in quantifiable changes in the host immune response, suggesting immunopathogenesis as the basis for the link between intestinal dysbiosis and ocular disease. We also examined and compared different techniques used in the identification and quantification of gut microorganisms. With our enhanced understanding of the potential role of gut commensals in ophthalmic disease, the stage is set for further studies on the underlying mechanisms linking the gut microbiome, the host immune response, and the pathogenesis of ophthalmic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541376 | PMC |
http://dx.doi.org/10.3390/jcm10204694 | DOI Listing |
J Immunother Cancer
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.
View Article and Find Full Text PDFGene
January 2025
Chongqing Blood Center, Chongqing city, 400015, China. Electronic address:
Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis.
View Article and Find Full Text PDFVet Microbiol
December 2024
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China. Electronic address:
Probiotics effectively alleviate host diarrhoea, but the specific mechanism is not clear. Therefore, we explored the protective mechanism of Bacillus coagulans (BC) on intestinal barrier injury induced by Klebsiella pneumoniae (K. pneumoniae) in rabbits by HE, immunofluorescence and 16S rRNA.
View Article and Find Full Text PDFMicrobiome
January 2025
Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!