A Tendon-Specific Double Reporter Transgenic Mouse Enables Tracking Cell Lineage and Functions Alteration In Vitro and In Vivo.

Int J Mol Sci

Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany.

Published: October 2021

We generated and characterized a transgenic mouse line with the tendon-specific expression of a double fluorescent reporter system, which will fulfill an unmet need for animal models to support real-time monitoring cell behaviors during tendon development, growth, and repair in vitro and in vivo. The mScarlet red fluorescent protein is driven by the () promoter to report the cell lineage alteration. The blue fluorescent protein reporter is expressed under the control of the 3.6kb () proximal promoter. In this promoter, the existence of two promoter regions named tendon-specific cis-acting elements (TSE1, TSE2) ensure the specific expression of blue fluorescent protein (BFP) in tendon tissue. Collagen I is a crucial marker for tendon regeneration that is a major component of healthy tendons. Thus, the alteration of function during tendon repair can be estimated by BFP expression. After mechanical stimulation, the expression of mScarlet and BFP increased in adipose-derived mesenchymal stem cells (ADMSCs) from our transgenic mouse line, and there was a rising trend on tendon key markers. These results suggest that our tendon-specific double reporter system is a novel model used to study cell re-differentiation and extracellular matrix alteration in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537162PMC
http://dx.doi.org/10.3390/ijms222011189DOI Listing

Publication Analysis

Top Keywords

transgenic mouse
12
vitro vivo
12
fluorescent protein
12
tendon-specific double
8
double reporter
8
cell lineage
8
alteration vitro
8
reporter system
8
blue fluorescent
8
tendon
5

Similar Publications

(Group A Streptococcus, GAS) is a human pathogen that causes local and systemic infections of the skin and mucous membranes. However, GAS is also found asymptomatically in the nasopharynx of infants. GAS infections, including pharyngitis and invasive pneumosepsis, pose significant public health concerns.

View Article and Find Full Text PDF

Combined antiretroviral therapy (cART) has dramatically improved the quality of life for people living with HIV (PLWH). However, over 4 million PLWH are over the age of fifty and experience accompanying HIV-associated neurocognitive disorders (HAND). To understand how HIV impacts the central nervous system, a reliable and feasible model of HIV is necessary.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) stands as a primary pathophysiological driver of low back pain, yet no therapeutic intervention effectively arrests its progression. Evidence shows that certain Sirt1 agonists may confer protective effects on intervertebral discs, but the underlying mechanisms remain unclear. This study aims to delineate the interaction between Sirt1 and the inflammatory microenvironment, offering potential novel avenues for IVDD prevention and treatment.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.

View Article and Find Full Text PDF

Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akia/Hhip-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/Hhip-Tg cf.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!