People living with human immunodeficiency virus (HIV) (PLWH) have increased risk for atherosclerosis-related cardiovascular disease (CVD), the main cause of death in this population. Notwithstanding, the mechanisms of HIV-associated vascular pathogenesis are not fully elucidated. Therefore, we sought to determine whether HIV-regulatory protein Tat mediates HIV-induced endothelial dysfunction via NADPH oxidase 1 (Nox1)-dependent mechanisms. Body weight, fat mass, leptin levels, expression of reactive oxygen species (ROS)-producing enzymes and vascular function were assessed in C57BL/6 male mice treated with Tat for 3 days and 4 weeks. Aortic rings and human endothelial cells were also treated with Tat for 2-24 h in ex vivo and in vitro settings. Chronic (4 weeks) but not acute (3 days and 2-24 h) treatment with Tat decreased body weight, fat mass, and leptin levels and increased the expression of and its coactivator . This was associated with impaired endothelium-dependent vasorelaxation. Importantly, specific inhibition of Nox1 with GKT771 and chronic leptin infusion restored endothelial function in Tat-treated mice. These data rule out direct effects of HIV-Tat on endothelial function and imply the contribution of reductions in adipose mass and leptin production which likely explain upregulated expression of Nox1 and NoxA1. The Nox1 and leptin system may provide potential targets to improve vascular function in HIV infection-associated CVD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540571 | PMC |
http://dx.doi.org/10.3390/ijms222010977 | DOI Listing |
Eur J Neurol
January 2025
Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background And Purpose: Patients with active cancer face an increased risk of ischemic stroke. Also, stroke may be an initial indicator of cancer. In patients with large vessel occlusion (LVO) stroke treated with thrombectomy, analysis of the clot composition may contribute new insights into the pathological connections between these two conditions.
View Article and Find Full Text PDFiScience
December 2024
Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
Transforming growth factor β (TGF-β) is abundantly present in the tumor microenvironment, contributing to cancer progression. However, the regulatory mechanism by which TGF-β affects vascular endothelial cells (ECs) in the tumor microenvironment is not well understood. Herein, we generated tamoxifen-inducible TGF-β type II receptor () knockout mice, specifically targeting ECs (TβRII), by crossbreeding TβRII-floxed mice with Pdgfb-icreER mice.
View Article and Find Full Text PDFAppl Clin Genet
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.
Background: Trimethylaminuria (TMAU) is a rare recessive genetic disorder with limited global prevalence. To date, there have been no official reports of TMAU cases documented in Saudi Arabia.
Purpose: In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) method for the analysis of trimethylamine (TMA) and Trimethylamine N-Oxide (TMAO) in urine and plasma samples for the first reported case of TMAU in Saudi Arabia.
Clin Cosmet Investig Dent
December 2024
Department of Physiology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam.
The tight junction (TJ), a type of cell-cell junction, regulates the permeability of solutes across epithelial and endothelial cellular sheets and is believed to maintain cell polarity. However, recent studies have provided conflicting views on the roles of TJs in epithelial polarity. Membrane proteins, including occludin, claudin, and the junction adhesion molecule, have been identified as TJ components.
View Article and Find Full Text PDFHypertension
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, China. (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.).
Background: Mechanosensitive Piezo1 channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear.
Methods: Endothelial cell (EC)-specific knockout (, Tek-Cre; ) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!