Food contamination leading to the spoilage and growth of undesirable bacteria, which can occur at any stage along the food chain, is a significant problem in the food industry. In the present work, biopolymer polybutylene succinate (PBS) and polybutylene succinate/tapioca starch (PBS/TPS) films incorporating Biomaster-silver (BM) and SANAFOR (SAN) were prepared and tested as food packaging to improve the lifespan of fresh chicken breast fillets when kept in a chiller for seven days. The incorporation of BM and SAN into both films demonstrated antimicrobial activity and could prolong the storability of chicken breast fillets until day 7. However, PBS + SAN 2%, PBS/TPS + SAN 1%, and PBS/TPS + SAN 2% films showed the lowest microbial log growth. In quality assessment, incorporation of BM and SAN into both film types enhanced the quality of the chicken breast fillets. However, PBS + SAN 1% film showed the most notable enhancement of chicken breast fillet quality, as it minimized color variation, slowed pH increment, decreased weight loss, and decelerated the hardening process of the chicken breast fillets. Therefore, we suggest that the PBS + SAN and PBS/TPS + SAN films produced in this work have potential use as antimicrobial packaging in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535215PMC
http://dx.doi.org/10.3390/foods10102379DOI Listing

Publication Analysis

Top Keywords

chicken breast
24
breast fillets
20
san films
12
pbs san
12
san pbs/tps
12
pbs/tps san
12
san
9
antimicrobial packaging
8
incorporation san
8
san film
8

Similar Publications

Acidic marinades are commonly used to improve the quality meat products. However, no study has been performed to determine the effects of rhubarb juice as a marinating liquid on the quality parameters of chicken breast fillets. The aim of the present study was to identify the bioactive compounds (organic acids, polyphenols, and volatiles) in the juice of rhubarb and to determine the effect of rhubarb juice as a marinade on the microbiological (total viable count, psychrotrophs, lactic acid bacteria, sulfate-reducing anaerobes, and yeast-molds) and physico-chemical properties (drip loss, cooking loss, water holding capacity, pH, color, malondialdehyde, total volatile base nitrogen, and texture profiles), sensory attributes, and microbial safety (Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes) of chicken breast fillets during a 15-day refrigerated storage.

View Article and Find Full Text PDF

Chicken meat production in organic systems involves free-range access where animals can express foraging and locomotor behaviours. These behaviours may promote outdoor feed intake, but at the same time energy expenditure when exploring the outdoor area. More generally, the relationship of range use with metabolism, welfare including health, growth performance and meat quality needs to be better understood.

View Article and Find Full Text PDF

Highly virulent colistin-susceptible Salmonella Havana ST1524 carrying the mcr-9.1 gene in food.

Microb Pathog

December 2024

Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, Brazil.

Salmonella enterica subsp. enterica serovar Havana is a potential pathogenic serotype that can cause human foodborne illness. Therefore, we have conducted a microbiological and genomic surveillance study of Salmonella Havana from food in Brazil.

View Article and Find Full Text PDF

We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio.

View Article and Find Full Text PDF

The chicken cecal microbiome alters bile acids and riboflavin metabolism that correlate with intramuscular fat content.

Front Microbiol

December 2024

Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Sciences, Guizhou University, Guiyang, China.

Intramuscular fat (IMF) is a key indicator of chicken meat quality and emerging studies have indicated that the gut microbiome plays a key role in animal fat deposition. However, the potential metabolic mechanism of gut microbiota affecting chicken IMF is still unclear. Fifty-one broiler chickens were collected to identify key cecal bacteria and serum metabolites related to chicken IMF and to explore possible metabolic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!