Many immunotherapies rely on CD8+ effector T cells to recognize and kill cognate tumor cells. These T cell-based immunotherapies include adoptive cell therapy, such as CAR T cells or transgenic TCR T cells, and anti-cancer vaccines which expand endogenous T cell populations. Tumor mutation burden and the choice of antigen are among the most important aspects of T cell-based immunotherapies. Here, we highlight various classes of cancer antigens, including self, neojunction-derived, human endogenous retrovirus (HERV)-derived, and somatic nucleotide variant (SNV)-derived antigens, and consider their utility in T cell-based immunotherapies. We further discuss the respective anti-tumor/anti-self-properties that influence both the degree of immunotolerance and potential off-target effects associated with each antigen class.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537967 | PMC |
http://dx.doi.org/10.3390/ph14100993 | DOI Listing |
Curr Protein Pept Sci
January 2025
Galgotias College of Pharmacy, Pharmacy, Greater Noida, Uttar Pradesh, 201310, India.
In recent years, novel therapeutic approaches have revolutionized the landscape of medicine, offering promising avenues for the cure of various diseases. The novel approaches explore advancements in gene therapy in pharmaceuticals, immunotherapy, RNA-based therapeutics, cell-based therapies, and targeted tumor therapies. Gene therapy has emerged as a groundbreaking approach, leveraging genetic material to cure or prevent diseases by targeting defective genes.
View Article and Find Full Text PDFFront Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFFront Immunol
January 2025
Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France.
Introduction: Acute myeloid leukemia (AML) is a rare haematological cancer with poor 5-years overall survival (OS) and high relapse rate. Leukemic cells are sensitive to Natural Killer (NK) cell mediated killing. However, NK cells are highly impaired in AML, which promote AML immune escape from NK cell immune surveillance.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Adoptive cell therapy (ACT) is a type of immunotherapy in which autologous or allogeneic immune cells, such as tumor-infiltrating lymphocytes or engineered lymphocytes, are infused into patients with cancer to eliminate malignant cells. Recently, autologous T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 showed a positive response in clinical studies for hematologic malignancies and have begun to be used in clinical practice. This article discusses the current status and promise of ACT research in hepatocellular carcinoma (HCC), focusing on challenges in off-the-shelf ACT using primary cells or induced pluripotent stem cells (iPSCs) with or without genetic engineering.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!