Biofilms represent a common and increasingly challenging problem in healthcare practices worldwide, producing persistent and difficult to manage infections. Researchers have started developing antibiotic-free treatment alternatives in order to decrease the risk of resistant microbial strain selection and for the efficient management of antibiotic tolerant biofilm infections. The present study reports the fabrication and characterization of magnetite-based nanostructured coatings for producing biofilm-resistant surfaces. Specifically, magnetite nanoparticles (FeO) were functionalized with chitosan (CS) and were blended with lysozyme (LyZ) and were deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique. A variety of characterization techniques were employed to investigate the physicochemical properties of both nanoparticles and nanocoatings. The biological characterization of the coatings assessed through cell viability and antimicrobial tests showed biocompatibility on osteoblasts as well as antiadhesive and antibiofilm activity against both Gram-negative and Gram-positive bacterial strains and no cytotoxic effect against human-cultured diploid cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532956 | PMC |
http://dx.doi.org/10.3390/antibiotics10101269 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China.
A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.
View Article and Find Full Text PDFNanotheranostics
January 2025
Translational Research Laboratory, Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Pleural tuberculosis (pTB) is a diagnostic challenge because of its non-specific clinical features, lack of accurate diagnostic tools and paucibacillary nature of the disease. We, here describe the development of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) targeting 4 different (. ) antigens (GlcB, MPT51, MPT64 and CFP-10) for pTB diagnosis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Aim & Background: Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies.
Methodology: MNPs were synthesised using the co-precipitation method.
ACS Omega
December 2024
Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
MSR-1 can biomineralize the magnetosome, nanoscale magnetite (FeO) surrounded by a lipid bilayer, inside the cell. The magnetosome chain(s) enables MSR-1 to move along with the magnetic field (magnetoaerotaxis). Due to its unique characteristics, MSR-1 has attracted attention for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!