The antimicrobial resistance is a topic of global interest in the treatment of wound infections. The goal of this retrospective study was both the identification of the microorganisms responsible for wound infections and the determination of their drug susceptibility pattern. The study was performed from 2017 to 2019 and included 239 patients. Thirty-four species were isolated by culture methods and identified and analysed for their susceptibility patterns to antimicrobials through the Walk Away automated system. The presence of one species was the most frequent condition (75.3%), whereas a co-infection was detected in 24.7% of samples. The most common species were Gram-negative (57.9%), amongst which the most prevalent were (40.2%), (20.7%), (11.2%), and (9.5%). Gram-positive bacteria were observed in 36.6%, (79.4%) being the most predominant species. At least one resistance to antibiotics was detected in 88.2% of isolates, while a multi-drug-resistance versus no less than 6 antimicrobials was detected in 29.2% of isolates. Although multi-drug resistant species and co-infections were observed, those were less frequently observed at the wound site. These conditions make the microorganisms eradication more difficult. The detection of a polymicrobial infection and multi-drug resistant microorganisms followed by a proper therapeutic treatment would lead to the resolution of the infection, promoting wound healing and the limitation of the spread of antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532735 | PMC |
http://dx.doi.org/10.3390/antibiotics10101162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!