Eradication programs for the boll weevil, Boheman (Coleoptera: Curculionidae), rely almost exclusively on pheromone traps to indicate the need for insecticide applications. However, the effectiveness of traps in detecting weevil populations is reduced during certain times of the year, particularly when cotton is actively fruiting. Consequently, this could result in fields becoming heavily infested with weevils. It is widely speculated that the lack of weevil captures in traps during this period is largely due to the overwhelming amount of pheromone released by weevils in the field, which outcompete the pheromone released from traps. Thus, this work sought to identify genes involved in pheromone production so that new control methods that target these genes can be explored. We conducted an RNA-seq experiment that revealed 2479 differentially expressed genes between pheromone-producing and non-pheromone-producing boll weevils. Of those genes, 1234 were up-regulated, and 1515 were down-regulated, and most had gene annotations associated with pheromone production, development, or immunity. This work advances our understanding of boll weevil pheromone production and brings us one step closer to developing gene-level control strategies for this cotton pest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540235 | PMC |
http://dx.doi.org/10.3390/insects12100893 | DOI Listing |
Insects
December 2024
Department of Sustainable Crop Production (DiProVeS), Università Cattolica del Sacro Cuore di Piacenza, 29122 Piacenza, Italy.
Background: Mating disruption (MD) is a worthwhile technique for the control of and in central Europe and Mediterranean areas. MD efficacy is affected by the pheromone release (PR), which in turn is influenced by environmental conditions.
Methods: The effect of weather conditions on PR was evaluated under four different fields in northern Italy.
Antibiotics (Basel)
December 2024
Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China.
Background: L2 is formed by combining the pheromone of () and a cell-penetrating peptide (CPP) with cell-penetrating selectivity. L2 has more significant penetration and better specificity for killing . However, the production of AMPs by chemical synthesis is always a challenge because of the production cost.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Industrial & Production Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi- 6204, Bangladesh.
To balance the convergence speed and solution diversity and enhance optimization performance when addressing large-scale optimization problems, this research study presents an improved ant colony optimization (ICMPACO) technique. Its foundations include the co-evolution mechanism, the multi-population strategy, the pheromone diffusion mechanism, and the pheromone updating method. The suggested ICMPACO approach separates the ant population into elite and common categories and breaks the optimization problem into several sub-problems to boost the convergence rate and prevent slipping into the local optimum value.
View Article and Find Full Text PDFPLoS One
December 2024
Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.
View Article and Find Full Text PDFSci Data
December 2024
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
The South American tomato pinworm, Tuta absoluta (Meyrick) is a newly emerged invasive pests causing devastating loss on tomato production globally. Semiochemical-based management is a promising method for controlling this pest. However, there is little known about how T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!