Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Porous polyethylene (PPE) implants are used for the reconstruction of tissue defects but have a risk of rejection in case of insufficient ingrowth into the host tissue. Various growth factors can promote implant ingrowth, yet a long-term gradient is a prerequisite for the mediation of these effects. As modification of the implant surface with nanocarriers may facilitate a long-term gradient by sustained factor release, implants modified with crosslinked albumin nanocarriers were evaluated in vivo.
Methods: Nanocarriers from murine serum albumin (MSA) were prepared by an inverse miniemulsion technique encapsulating either a low- or high-molar mass fluorescent cargo. PPE implants were subsequently coated with these nanocarriers. In control cohorts, the implant was coated with the homologue non-encapsulated cargo substance by dip coating. Implants were consequently analyzed in vivo using repetitive fluorescence microscopy utilizing the dorsal skinfold chamber in mice for ten days post implantation.
Results: Implant-modification with MSA nanocarriers significantly prolonged the presence of the encapsulated small molecules while macromolecules were detectable during the investigated timeframe regardless of the form of application.
Conclusions: Surface modification of PPE implants with MSA nanocarriers results in the alternation of release kinetics especially when small molecular substances are used and therefore allows a prolonged factor release for the promotion of implant integration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533240 | PMC |
http://dx.doi.org/10.3390/biomedicines9101485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!