Myeloid dysfunction is an emerging hallmark of microenvironment changes occurring in multiple myeloma (MM). Our previous work showed that FcγRI/CD64 overexpression in neutrophils of newly diagnosed MM patients is associated to inferior outcomes, reduced oxidative bursts and phagocytosis, with an increased risk of bacterial infections. Pomalidomide is a novel immune-modulatory drug approved for relapsed/refractory patients (RRMM), with drug-related neutropenia as major limitation to treatment. Herein, we describe a prospective analysis of 51 consecutive RRMM patients treated with pomalidomide and dexamethasone (PomDex) from March 2015 through December 2016, associated with secondary prophylaxis with filgrastim (G-CSF) in case of neutrophil count <1500 cells/μL. Neutrophil function was investigated by flow cytometry, including the phagocytosis, oxidative bursts, and median fluorescence intensity of FcγRI-CD64. Controls included a group of newly diagnosed symptomatic MM (NDMM), asymptomatic (smoldering myeloma, MGUS) and healthy subjects referred to our Center in the same time-frame. Compared to controls, RRMM neutrophils had higher expression of FcγRI/CD64 and lower phagocytic activity and oxidative bursts. We maintained median leukocyte counts higher than 3.5 × 10/L for 6 cycles, and median neutrophil counts higher than 1.5 × 10/L, with only 6 (11%) patients developing grade 3-4 infections, without pomalidomide dose reduction. After 4 cycles of PomDex, FcγRI/CD64 was further increased in neutrophils, and phagocytic activity and oxidative bursts recovered independently from filgrastim exposure and the quality of hematological responses. Similarly, in NDMM patients, lenalidomide but not bortezomib upregulated FcγRI/CD64 expression, improving phagocytic activity and oxidative bursta as tested in vitro. Our combined biological and clinical data provide new information on the ability of pomalidomide and lenalidomide to modulate the functional activity of neutrophils, despite their chronic activation due to FcγRI/CD64 overexpression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533128 | PMC |
http://dx.doi.org/10.3390/biomedicines9101455 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFScand J Med Sci Sports
February 2025
Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.
View Article and Find Full Text PDFMol Oncol
January 2025
Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan.
Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).
Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.
Curr Issues Mol Biol
January 2025
Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece.
Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!