Protein Unfolding: Denaturant vs. Force.

Biomedicines

Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.

Published: October 2021

While protein refolding has been studied for over 50 years since the pioneering work of Christian Anfinsen, there have been a limited number of studies correlating results between chemical, thermal, and mechanical unfolding. The limited knowledge of the relationship between these processes makes it challenging to compare results between studies if different refolding methods were applied. Our current work compares the energetic barriers and folding rates derived from chemical, thermal, and mechanical experiments using an immunoglobulin-like domain from the muscle protein titin as a model system. This domain, I83, has high solubility and low stability relative to other Ig domains in titin, though its stability can be modulated by calcium. Our experiments demonstrated that the free energy of refolding was equivalent with all three techniques, but the refolding rates exhibited differences, with mechanical refolding having slightly faster rates. This suggests that results from equilibrium-based measurements can be compared directly but care should be given comparing refolding kinetics derived from refolding experiments that used different unfolding methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533514PMC
http://dx.doi.org/10.3390/biomedicines9101395DOI Listing

Publication Analysis

Top Keywords

chemical thermal
8
thermal mechanical
8
refolding
7
protein unfolding
4
unfolding denaturant
4
denaturant force
4
force protein
4
protein refolding
4
refolding studied
4
studied years
4

Similar Publications

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Murray (GMLR) and L. (GMLB).

View Article and Find Full Text PDF

Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci

December 2024

Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.

This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!