Improved Immunotherapy Efficacy by Vascular Modulation.

Cancers (Basel)

Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

Published: October 2021

Several strategies have been developed to modulate the tumour vasculature for cancer therapy including anti-angiogenesis and vascular normalisation. Vasculature modulation results in changes to the tumour microenvironment including oxygenation and immune cell infiltration, therefore lending itself to combination with cancer therapy. The development of immunotherapies has led to significant improvements in cancer treatment. Particularly promising are immune checkpoint blockade and CAR T cell therapies, which use antibodies against negative regulators of T cell activation and T cells reprogrammed to better target tumour antigens, respectively. However, while immunotherapy is successful in some patients, including those with advanced or metastatic cancers, only a subset of patients respond. Therefore, better predictors of patient response and methods to overcome resistance warrant investigation. Poor, or periphery-limited, T cell infiltration in the tumour is associated with poor responses to immunotherapy. Given that (1) lymphocyte recruitment requires leucocyte-endothelial cell adhesion and (2) the vasculature controls tumour oxygenation and plays a pivotal role in T cell infiltration and activation, vessel targeting strategies including anti-angiogenesis and vascular normalisation in combination with immunotherapy are providing possible new strategies to enhance therapy. Here, we review the progress of vessel modulation in enhancing immunotherapy efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533721PMC
http://dx.doi.org/10.3390/cancers13205207DOI Listing

Publication Analysis

Top Keywords

cell infiltration
12
immunotherapy efficacy
8
cancer therapy
8
including anti-angiogenesis
8
anti-angiogenesis vascular
8
vascular normalisation
8
cell
6
tumour
5
improved immunotherapy
4
efficacy vascular
4

Similar Publications

Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.

View Article and Find Full Text PDF

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

TNIP1 Impacts Prognosis by Modulating the Immune Microenvironment in BRCA.

Biochem Genet

January 2025

Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.

Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!