Methylosystem for Cancer Sieging Strategy.

Cancers (Basel)

Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan.

Published: October 2021

As cancer is a genetic disease, methylation defines a biologically malignant phenotype of cancer in the association of one-carbon metabolism-dependent S-adenosylmethionine (SAM) as a methyl donor in each cell. Methylated substances are involved in intracellular metabolism, but via intercellular communication, some of these can also be secreted to affect other substances. Although metabolic analysis at the single-cell level remains challenging, studying the "methylosystem" (i.e., the intercellular and intracellular communications of upstream regulatory factors and/or downstream effectors that affect the epigenetic mechanism involving the transfer of a methyl group from SAM onto the specific positions of nucleotides or other metabolites in the tumor microenvironment) and tracking these metabolic products are important research tasks for understanding spatial heterogeneity. Here, we discuss and highlight the involvement of RNA and nicotinamide, recently emerged targets, in SAM-producing one-carbon metabolism in cancer cells, cancer-associated fibroblasts, and immune cells. Their significance and implications will contribute to the discovery of efficient methods for the diagnosis of and therapeutic approaches to human cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534198PMC
http://dx.doi.org/10.3390/cancers13205088DOI Listing

Publication Analysis

Top Keywords

methylosystem cancer
4
cancer sieging
4
sieging strategy
4
cancer
4
strategy cancer
4
cancer genetic
4
genetic disease
4
disease methylation
4
methylation defines
4
defines biologically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!