Effect of Ashwagandha Withanolides on Muscle Cell Differentiation.

Biomolecules

AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan.

Published: October 2021

(Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson's disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533065PMC
http://dx.doi.org/10.3390/biom11101454DOI Listing

Publication Analysis

Top Keywords

ashwagandha withanolides
8
muscle cell
8
cell differentiation
8
ashwagandha extracts
8
withaferin withanone
8
differentiation c2c12
8
ashwagandha
5
withanolides muscle
4
differentiation
4
differentiation ashwagandha
4

Similar Publications

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV.

View Article and Find Full Text PDF

Throughout history, medicinal plants have played a significant role in various traditional medical systems. This review article focusses on therapeutic properties of , and . These plants have earned recognition for their curative, medical, life-sustaining and chemical uses.

View Article and Find Full Text PDF

Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P.

View Article and Find Full Text PDF

Alzheimer's disease (AD), characterised by gradual memory loss and neurodegeneration, is an important risk to global health. Despite the recent advances in the field of neuroscience, the complex biological mechanisms underlying the aetiology and pathology of AD have not been elucidated yet. The development of amyloid-beta plaques, hyperphosphorylation of tau protein, oxidative stress, and neuroinflammation have been identified as important components.

View Article and Find Full Text PDF

: This study investigates the effectiveness of an herbal formulation, STRESSLESS (ST-65), which combines ashwagandha () and bacopa (), on SH-SY5Y human neuroblastoma cells. Given the rising interest in natural compounds for neuroprotection and stress alleviation, we aimed to explore the cellular and molecular effects of this formulation. : Utilizing a nuclear magnetic resonance (NMR) metabolomic approach and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS), we identified key bioactive compounds in ST-65, including withanolides from ashwagandha and bacosides from bacopa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!