Objective: Epidemiological studies link hyperlipidemia with increased risk for abdominal aortic aneurysms (AAAs). However, the influence of lipid-lowering drugs statins on prevalence and progression of clinical and experimental AAAs varies between reports, engendering controversy on the association of hyperlipidemia with AAA disease. This study investigated the impact of hypercholesterolemia on elastase-induced experimental AAAs in mice.

Methods: Both spontaneous (targeted deletion of apolipoprotein E) and induced mouse hypercholesterolemia models were employed. In male wild type (WT) C57BL/6J mice, hypercholesterolemia was induced via intraperitoneal injection of an adeno-associated virus (AAV) encoding a gain-of-function proprotein convertase subtilisin/kexin type 9 mutation (PCSK9) followed by the administration of a high-fat diet (HFD) (PCSK9+HFD) for two weeks. As normocholesterolemic controls for PCSK9+HFD mice, WT mice were infected with PCSK9 AAV and fed normal chow, or injected with phosphate-buffered saline alone and fed HFD chow. AAAs were induced in all mice by intra-aortic infusion of porcine pancreatic elastase and assessed by ultrasonography and histopathology.

Results: In spontaneous hyper- and normo-cholesterolemic male mice, the aortic diameter enlarged at a constant rate from day 3 through day 14 following elastase infusion. AAAs, defined as a more than 50% diameter increase over baseline measurements, formed in all mice. AAA progression was more pronounced in male mice, with or without spontaneous hyperlipidemia. The extent of elastin degradation and smooth muscle cell depletion were similar in spontaneous hyper- (score 3.5 for elastin and 4.0 for smooth muscle) and normo- (both scores 4.0) cholesterolemic male mice. Aortic mural macrophage accumulation was also equivalent between the two groups. No differences were observed in aortic accumulation of CD4 or CD8 T cells, B cells, or mural angiogenesis between male spontaneous hyper- and normocholesterolemic mice. Similarly, no influence of spontaneous hypercholesterolemia on characteristic aneurysmal histopathology was noted in female mice. In confirmatory experiments, induced hypercholesterolemia also exerted no appreciable effect on AAA progression and histopathologies.

Conclusion: This study demonstrated no recognizable impact of hypercholesterolemia on elastase-induced experimental AAA progression in both spontaneous and induced hypercholesterolemia mouse models. These results add further uncertainty to the controversy surrounding the efficacy of statin therapy in clinical AAA disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533453PMC
http://dx.doi.org/10.3390/biom11101434DOI Listing

Publication Analysis

Top Keywords

hypercholesterolemia elastase-induced
12
elastase-induced experimental
12
spontaneous hyper-
12
male mice
12
aaa progression
12
mice
10
hypercholesterolemia
8
abdominal aortic
8
experimental aaas
8
aaa disease
8

Similar Publications

Objective: Epidemiological studies link hyperlipidemia with increased risk for abdominal aortic aneurysms (AAAs). However, the influence of lipid-lowering drugs statins on prevalence and progression of clinical and experimental AAAs varies between reports, engendering controversy on the association of hyperlipidemia with AAA disease. This study investigated the impact of hypercholesterolemia on elastase-induced experimental AAAs in mice.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms.

Arterioscler Thromb Vasc Biol

December 2014

From the Department of Pharmacology and Nutritional Sciences (S.E.T., F.Y., L.A.C.), Graduate Center for Toxicology (X.Z.), and Saha Cardiovascular Research Center, Department of Internal Medicine (D.A.H., A.D.), University of Kentucky, Lexington; Division of Nephrology, Department of Medicine, Duke University, Durham, NC (S.B.G.); and Department of Surgery, Section of Vascular Surgery, Washington University, St Louis, MO (T.E., J.A.C.).

Objective: Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (AngII) to form angiotensin-(1-7) (Ang-(1-7)), which generally opposes effects of AngII. AngII infusion into hypercholesterolemic male mice induces formation of abdominal aortic aneurysms (AAAs). This study tests the hypothesis that deficiency of ACE2 promotes AngII-induced AAAs, whereas ACE2 activation suppresses aneurysm formation.

View Article and Find Full Text PDF

Atherosclerosis, the leading cause of most cardiovascular disease, is a progressive multifaceted inflammatory disease characterized by extracellular matrix degradation and extensive remodeling of artery wall. However, its mechanism has not been completely understood, and animal models are useful to study its pathogenetic process. An analysis of literature on the nature of atherosclerosis indicates that focal accumulation of smooth muscle cells (SMCs) into the intima by plasma factors is fundamental to the entire process of plaque growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!