In the last few years MMTV-like nucleotide sequences were detected in some feline and canine mammary tumours. Due to the confirmed role of cats in the epidemiology of the MMTV-like virus, the aim of this study was to investigate the main pathological features of positive feline mammary carcinomas (FMCs). Twenty-four FMCs were collected at the University of Bologna, submitted to laser microdissection and analysed by nested fluorescence-PCR using primer sets specific for MMTV sequence. For immunohistochemistry, an antibody against MMTV protein 14 (p14) was used. MMTV-like sequences were detected in three out of 24 FMCs (12.5%), one tubular carcinoma, one tubulopapillary carcinoma and one ductal carcinoma. All PCR-positive tumours were also positive for p14. Multiple nucleotide alignment has shown similarity to MMTV ranging from 98% to 100%. All the 102 examined FMCs were submitted to immunohistochemistry for molecular phenotyping. Of the nine MMTV-like positive FMCs, six were basal-like and three luminal-like. Our results demonstrate MMTV-like sequences and protein in FMCs of different geographic areas. Molecular phenotyping could contribute to understand the possible role of MMTV-like virus in FMC tumor biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532932 | PMC |
http://dx.doi.org/10.3390/ani11102821 | DOI Listing |
Neuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, Renmin Hospital of Wuhan University, 99 Zhang Zhi-dong Road, Wuhan, Hubei, 430060, P.R. China.
Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.
Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.
Discov Oncol
January 2025
Pathology Department, Salah Azeiz Institute, 1006, Tunis, Tunisia.
Follicular dendritic cell sarcoma (FDCS) is a rare malignancy, often challenging to diagnose due to its nonspecific presentation and resemblance to other neoplasms. This case highlights a locally advanced nasopharyngeal FDCS initially misdiagnosed as a meningioma, underscoring the importance of differential diagnosis in unusual tumor presentations. A 77-year-old patient presented with nasal obstruction for 3 months.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!