Locomotion of micromotors in paper chips.

Nanoscale

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.

Published: November 2021

Locomotion of nano/micromotors in non-aqueous environments remains a challenging task. We assembled magnetic micromotors with different surface coatings and explored their locomotion in paper chips. Poly(L-lysine) deposition resulted in positively charged micromotors. Immobilized cellulase was used to increase the micromotors' paper penetration depth while a polyethylene glycol (PEG) coating was employed to limit the interaction between the micromotors and the cellulose fibers. All micromotors were able to move in the top layers of the paper chips with velocities dependent on the magnetic forces used to induce their locomotion, their sizes and the types of employed paper chips. Maximum speeds of up to ∼25 μm s were observed for PEGylated micromotors in the fibrous cellulose environment. This type of micromotors has the potential to be considered in the area of paper microfluidics to facilitate distribution, or collection of moieties for biosensing or cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr06221bDOI Listing

Publication Analysis

Top Keywords

paper chips
16
paper
6
micromotors
6
locomotion
4
locomotion micromotors
4
micromotors paper
4
chips
4
chips locomotion
4
locomotion nano/micromotors
4
nano/micromotors non-aqueous
4

Similar Publications

Minimally Invasive Glass-Ceramic Restorations: Clinical and Patient-Reported Outcomes in Full-Mouth Rehabilitations.

J Dent

January 2025

Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland.

Objectives: To evaluate clinical outcomes (restoration survival, technical and biological complications), and patient-reported outcome measures (PROMs) of full mouth rehabilitation with minimally invasive glass-ceramic restorations after up to 12 years of clinical service.

Materials And Methods: Twenty individuals (12 females, 8 males) received full-mouth rehabilitation with minimally invasive tooth-supported glass-ceramic restorations during the years 2009 - 2017 and agreed to participate in a follow-up visit. Full dental and periodontal examinations were completed, and the restorations were evaluated according to United States Public Health Service (USPHS) criteria.

View Article and Find Full Text PDF

ShaderNN: A Lightweight and Efficient Inference Engine for Real-time Applications on Mobile GPUs.

Neurocomputing (Amst)

January 2025

Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.

Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.

View Article and Find Full Text PDF

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

Development of a portable multi-step microfluidic device for point-of-care nucleic acid diagnostics.

Anal Chim Acta

January 2025

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:

Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).

View Article and Find Full Text PDF

Processing and inspection of high-pressure microfluidics systems: A review.

Biomicrofluidics

January 2025

State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China.

In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!