Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part II-Human Studies.

Toxics

Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland.

Published: October 2021

Exposure to various forms of arsenic (As), the source of which may be environmental as well as occupational exposure, is associated with many adverse health effects. Therefore, methods to reduce the adverse effects of As on the human body are being sought. Research in this area focuses, among other topics, on the dietary compounds that are involved in the metabolism of this element. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B, B, B and zinc on the efficiency of inorganic As (iAs) metabolism and the reduction in the severity of the whole spectrum of disorders related to As exposure. In this review, which included 62 original papers (human studies) we present the current knowledge in the area. In human studies, these compounds (methionine, choline, folic acid, vitamin B, B, B and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency may impair iAs metabolism and increase As toxicity. Taking into account the results of studies conducted in populations exposed to As, it is reasonable to carry out prophylactic activities. In particular nutritional education seems to be important and should be focused on informing people that an adequate intake of those dietary compounds potentially has a modulating effect on iAs metabolism, thus, reducing its adverse effects on the body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541625PMC
http://dx.doi.org/10.3390/toxics9100259DOI Listing

Publication Analysis

Top Keywords

ias metabolism
16
dietary compounds
12
adverse effects
8
choline folic
8
folic acid
8
acid vitamin
8
vitamin zinc
8
human studies
8
metabolism
6
influence dietary
4

Similar Publications

Arsenic (As) is a toxic metalloid widespread in the environment, and its exposure has been associated with a variety of adverse health outcomes. As exposure is demonstrated to cause nonalcoholic fatty liver disease (NAFLD), and the underlying epigenetic mechanisms remain largely unknown. This study aimed to investigate the roles of histone modifications in low-level As exposure-induced NAFLD in rats.

View Article and Find Full Text PDF

The astringent selection criteria for milk-oriented traits in dairy cattle have rendered these animals prone to various metabolic disorders. Postpartum lactational peak and reduced feed intake lead to negative energy balance in cattle. As a compensatory mechanism, cattle start mobilizing fat reserves to meet the energy demand for vital body functions.

View Article and Find Full Text PDF

Tumor-Targeted Catalytic Immunotherapy.

Adv Mater

December 2024

The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.

Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials.

View Article and Find Full Text PDF

The WAVE regulatory pentameric complex regulates actin remodeling. Two components of it (CYFIP2 and NCKAP1) are encoded by genes whose genetic mutations increase the risk for autism spectrum disorder (ASD) and related neurodevelopmental disorders. Here, we use a newly developed computational protocol and hotspot analysis to uncover the functional impact of these mutations at the interface of the correct isoforms of the two proteins into the complex.

View Article and Find Full Text PDF

Control of arsenic methylation in paddy soils by iron nanoparticles.

Sci Total Environ

December 2024

State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Rice, as the most essential food grain, is frequently exposed to high concentrations of arsenic. Among the arsenic species, dimethylarsenate (DMAs(V)) is preferentially translocated from paddy soils to rice grains, posing serious threats to food safety and yield. Herein, we report an efficient strategy for DMAs(V) mitigation in paddy soils with nanoscale Zero-Valent Iron (nZVI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!