X-Ray Phase Contrast 3D Virtual Histology: Evaluation of Lung Alterations After Microbeam Irradiation.

Int J Radiat Oncol Biol Phys

Faculty of Physics, Ludwig Maximilian University, München, Garching, Germany; Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. Electronic address:

Published: March 2022

Purpose: This study provides the first experimental application of multiscale 3-dimensional (3D) x-ray phase contrast imaging computed tomography (XPCI-CT) virtual histology for the inspection and quantitative assessment of the late-stage effects of radio-induced lesions on lungs in a small animal model.

Methods And Materials: Healthy male Fischer rats were irradiated with x-ray standard broad beams and microbeam radiation therapy, a high-dose rate (14 kGy/s), FLASH spatially fractionated x-ray therapy to avoid beamlet smearing owing to cardiosynchronous movements of the organs during the irradiation. After organ dissection, ex vivo XPCI-CT was applied to all the samples and the results were quantitatively analyzed and correlated to histologic data.

Results: XPCI-CT enables the 3D visualization of lung tissues with unprecedented contrast and sensitivity, allowing alveoli, vessel, and bronchi hierarchical visualization. XPCI-CT discriminates in 3D radio-induced lesions such as fibrotic scars and Ca/Fe deposits and allows full-organ accurate quantification of the fibrotic tissue within the irradiated organs. The radiation-induced fibrotic tissue content is less than 10% of the analyzed volume for all microbeam radiation therapy-treated organs and reaches 34% in the case of irradiations with 50 Gy using a broad beam.

Conclusions: XPCI-CT is an effective imaging technique able to provide detailed 3D information for the assessment of lung pathology and treatment efficacy in a small animal model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2021.10.009DOI Listing

Publication Analysis

Top Keywords

x-ray phase
8
phase contrast
8
virtual histology
8
radio-induced lesions
8
small animal
8
microbeam radiation
8
fibrotic tissue
8
xpci-ct
5
x-ray
4
contrast virtual
4

Similar Publications

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Rationale And Objectives: Mixed ground-glass nodules (mGGNs) are highly malignant and common nonspecific lung imaging findings. This study aimed to explore whether combining quantitative and qualitative spectral dual-layer detector-based computed tomography (SDCT)-derived parameters with serological tumor abnormal proteins (TAPs) and thymidine kinase 1 (TK1) expression enhances invasive mGGN diagnostic efficacy and to develop a joint diagnostic model.

Materials And Methods: This prospective study included patients with mGGNs undergoing preoperative triple-phase contrast-enhanced SDCT with TAP and TK1 tests.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!