The study of greed has been broadly investigated and discussed in the field of social sciences, including economics, political science, and psychology. However, the neural mechanisms underlying greed personality trait (GPT) have received little attention from the cognitive neuroscience field and still remain unclear. In this study, we explored the associations between GPT and static/dynamic reward circuit-specifically its sub-regions' functional networks including caudate, nucleus accumbens (NAcc), and putamen. Behavioral analyses revealed significant associations of GPT with Past-Negative and Present-Fatalistic time attitude as well as attention impulsivity. Imaging analyses revealed a significant interaction effect between sex and GPT on the static reward functional networks. In particular, GPT was positively correlated with static caudate-NAcc, caudate-cerebellum, and NAcc-parahippocampus/medial orbitofrontal cortex (PHG/mOFC) for males but negatively correlated for females. GPT was also marginally and negatively correlated with static putamen-occipital pole functional connectivities among males. Interestingly, sex difference interaction patterns were further observed in the dynamic reward functional networks. Further, dynamic reward functional networks also exhibited some specific characteristics, manifesting in more brain regions involved for greedy behaviors. These findings suggest sex-specific static and dynamic functional networks underlying human dispositional greed, and also implicate the critical contributions of reward circuit, especially for sub-circuits of reward, on greed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2021.108066 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Radiation Oncology Network, Westmead Hospital, Westmead, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. Electronic address:
Aims: Unresectable cutaneous squamous cell cancer of the head and neck (HNcSCC) poses treatment challenges in elderly and comorbid patients. Radiation therapy (RT) is often employed for locoregional control. This study aimed to determine progression-free survival (PFS) and overall survival (OS) outcomes achieved with upfront RT in unresectable HNcSCC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!