A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane distillation for achieving high water recovery for potable water reuse. | LitMetric

Achieving high water recovery using reverse osmosis membranes is challenging during water recycling because the increased concentrations of organics and inorganics in wastewater can cause rapid membrane fouling, necessitating frequent cleaning using chemical agents. This study evaluated the potential of membrane distillation to purify reverse osmosis-concentrated wastewater and achieve 98% overall water recovery for potable water reuse. The results indicate that membrane fouling during membrane distillation treatment was low (4% reduction in permeability) until 98% water recovery. In contrast, membrane fouling during reverse osmosis treatments was high (73% reduction in permeability) before reaching 90% water recovery. Furthermore, membrane distillation showed superior performance in removing dissolved ions (99.9%) from wastewater as compared with reverse osmosis (98.9%). However, although membrane distillation removed most trace organic chemicals tested in this study, a negligible rejection (11%) was observed for N-nitrosodimethylamine, a disinfection byproduct regulated in potable water reuse. In contrast, RO treatment exhibited a high removal of N-nitrosodimethylamine (70%). Post-treatment (e.g., advanced oxidation) after reverse osmosis and membrane distillation may be needed to comply with the N-nitrosodimethylamine regulations. Overall, the membrane distillation process had the capacity to purify reverse osmosis concentrate with insignificant membrane fouling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132610DOI Listing

Publication Analysis

Top Keywords

membrane distillation
28
water recovery
20
reverse osmosis
20
membrane fouling
16
potable water
12
water reuse
12
membrane
11
water
9
achieving high
8
high water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!